The Apron Library

Antoine Miné

CNRS, École normale supérieure

CEA Seminar December the 10th, 2007

Outline

- Introduction
 - Main goals
 - Theoretical background
 - The APRON project
- The Apron Library
 - General description
 - Library API (data-types, abstract functions)
 - Abstract domain examples (intervals, octagons, polyhedra)
 - Linearization
- The Interproc Analyzer
 - Description
 - Demonstration

Introduction

Static Analysis

Goal: Static Analysis

Discover properties of a program statically and automatically.

Applications:

- compilation and optimisation, e.g. :
 - array bound check elimination
 - alias analysis
- verification and debugging, e.g. :
 - infer invariants
 - prove the absence of run-time errors (division by zero, overflow, invalid array access)
 - prove functional properties

Invariant Discovery Examples

Insertion Sort for i=1 to 99 do p := T[i]; j := i+1;while $j \le 100$ and $T[j] \le p$ do T[j-1] := T[j]; j := j+1;end; T[j-1] := p;end;

Invariant Discovery Examples

Interval analysis:

```
Insertion Sort
 for i=1 to 99 do
   i \in [1, 99]
   p := T[i]; j := i+1;
   i \in [1,99], j \in [2,100]
   while j \le 100 and T[j] < p do
     i \in [1, 99], i \in [2, 100]
     T[j-1] := T[j]; j := j+1;
     i \in [1,99], j \in [3,101]
   end;
   i \in [1, 99], j \in [2, 101]
   T[j-1] := p;
 end;
```

⇒ there is no out of bound array access

Invariant Discovery Examples

Linear relation analysis:

```
Insertion Sort
 for i=1 to 99 do
   i \in [1, 99]
   p := T[i]; j := i+1;
   i \in [1,99], j = i + 1
   while j \le 100 and T[j] < p do
     i \in [1,99], i+1 < j < 100
     T[j-1] := T[j]; j := j+1;
     i \in [1,99], i + 2 \le j \le 101
   end;
   i \in [1,99], i+1 \le j \le 101
   T[j-1] := p;
 end;
```

⇒ there is no out of bound array access

Theoretical Background

Abstract Interpretation: unifying theory of program semantics

Provide theoretical tools to design and compare static analyses that :

- always terminate
- are sound by construction (no behavior is omitted)
- are approximate (solve undecidability and efficiency issues)

Concrete Semantics

Concrete Semantics:

most precise mathematical expression of the program behavior

Example: from program to equation system

$$\begin{array}{c|c} \text{entry} & \mathbf{1} & \\ \mathbf{X} :=?(0,10) & \mathbf{2} & \\ \text{loop} & \mathbf{Y} :=100 & \mathbf{3} & \mathbf{X} < 0 \\ \text{invariant} & \mathbf{X} >=0 & \mathbf{6} \\ \mathbf{X} :=\mathbf{X} - \mathbf{1} & \mathbf{5} & \mathbf{Y} :=\mathbf{Y} + \mathbf{10} \\ \end{array}$$

Where:

- \mathcal{X}_i is a set of states, here $\mathcal{X}_i \in \mathcal{P}(\{\mathtt{X},\mathtt{Y}\} \to \mathbb{Z}) = \mathcal{D}$
- \bullet $\{\cdot\}$ model the effect of tests and assignments
- the recursive system has a unique least solution (Ifp)

Abstract Domains

Undecidability Issues:

- ullet the concrete domain ${\mathcal D}$ is not computer-representable
- ullet $\{\cdot\}$ and \cup are not computable
- Ifp is not computable
- \Longrightarrow we work in a **abstract domain** \mathcal{D}^{\sharp} instead

Definition of an abstract domain:

- \mathcal{D}^{\sharp} : a set of computer-representable elements
- ullet a partial order \sqsubseteq^\sharp on \mathcal{D}^\sharp
- ullet $\gamma:\mathcal{D}^{\sharp} o\mathcal{D}$, monotonic, gives a meaning to abstract elements
- $\{ \cdot \}^{\sharp} : \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp} \text{ and } \cup^{\sharp} : (\mathcal{D}^{\sharp})^{2} \to \mathcal{D}^{\sharp} \text{ are abstract sound}$ counterparts to $\{ \cdot \} \text{ and } \cup :$

$$\forall \mathcal{X} \in \mathcal{D}^{\sharp} \qquad (\gamma \circ \{ \cdot \}^{\sharp})(\mathcal{X}) \supseteq (\{ \cdot \} \circ \gamma)(\mathcal{X})$$
$$\forall \mathcal{X}, \mathcal{Y} \in \mathcal{D}^{\sharp} \qquad \gamma(\mathcal{X} \cup^{\sharp} \mathcal{Y}) \supseteq \gamma(\mathcal{X}) \cup \gamma(\mathcal{Y})$$

• $\nabla: (\mathcal{D}^{\sharp})^2 \to \mathcal{D}^{\sharp}$ abstracts \cup and enforces termination : $\forall \mathcal{Y}_i \in \mathcal{D}^{\sharp}, \ \mathcal{X}_0 \stackrel{\text{def}}{=} \mathcal{Y}_0, \ \mathcal{X}_{i+1} \stackrel{\text{def}}{=} \mathcal{X}_i \ \forall \ \mathcal{Y}_{i+1} \text{ converges finitely}$

Antoine Miné

Abstract Semantics

The concrete equation system is replaced with an abstract one :

entry
$$\begin{array}{c} (0,10) \downarrow 1 \\ (0,10) \downarrow 2 \\ (0,10) \downarrow 2 \\ (0,10) \downarrow 3 \\ (0,10) \downarrow 4 \\ (0,10) \downarrow 4 \\ (0,10) \downarrow 5 \\ (0,10) \downarrow 5 \\ (0,10) \downarrow 6 \\ (0,10) \downarrow 6 \\ (0,10) \downarrow 7 \\ (0,10$$

A solution can be found in finite time by iterations :

- start from $\mathcal{X}_1^{0\sharp} \stackrel{\mathrm{def}}{=} \mathsf{T}^{\sharp}$, $\mathcal{X}_{k \neq 1}^{0\sharp} \stackrel{\mathrm{def}}{=} \mathsf{\bot}^{\sharp}$
- update all \mathcal{X}_k^{\sharp} at each iteration : e.g. $\mathcal{X}_4^{i+1\sharp} \stackrel{\mathrm{def}}{=} \{\!\!\{ \mathtt{X} \geq \mathtt{0} \,\}\!\!\}^{\sharp} (\mathcal{X}_3^{i\sharp})$
- use widening at loop heads : e.g. $\mathcal{X}_3^{i+1\sharp} \stackrel{\mathrm{def}}{=} \mathcal{X}_3^{i\sharp} \nabla \left(\left\{ Y := 100 \right\}^{\sharp} (\mathcal{X}_2^{i\sharp}) \cup^{\sharp} \left\{ Y := Y + 10 \right\}^{\sharp} (\mathcal{X}_5^{i\sharp}) \right)$

It is a sound abstraction of the concrete semantics \mathcal{X}_i .

Numerical Abstract Domains

Important case:

When \mathcal{D}^{\sharp} abstract $\mathcal{D} \stackrel{\mathsf{def}}{=} \mathcal{P}(\mathtt{Var} \to \mathbb{I})$ and

- Var is a finite set of variables
- ullet I is a numerical set, e.g., $\mathbb Z$ or $\mathbb R$

Applications:

- discover numerical properties on program variables
- prove the absence of a large class of run-time errors (division by 0, overflow, out of bound array access, etc.)
- parametrize non-numerical analyses (pointer analysis, shape analysis)

Some Existing Numerical Abstract Domains

Intervals

$$X_i \in [a_i, b_i]$$
[Cousot-Cousot-76]

Linear Equalities

$$\sum_{i} \alpha_{i} X_{i} = \beta$$
[Karr-76]

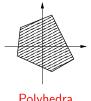
Simple Congruences

$$X_i \equiv a_i [b_i]$$
[Granger-89]

Linear Congruences

$$\sum_{i} \alpha_{i} X_{i} \equiv \beta [\gamma]$$
[Granger-91]

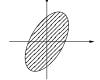
Some Existing Numerical Abstract Domains (cont.)



Polyhedra

$$\sum_{i} \alpha_{i} X_{i} \geq \beta$$

[Cousot-Halbwachs-78]



Ellipsoids

$$\alpha X^2 + \beta Y^2 + \gamma XY \le \delta$$
[Feret-04]

Octagons

$$\pm X_i \pm X_j \le \beta$$
 [Miné-01]

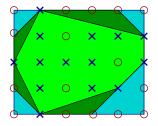
Varieties

$$P(\vec{X}) = 0, P \in \mathbb{R}[Var]$$

[Sankaranarayanan-Sipma-Manna-04]

Precision vs. Cost Tradeoff

Example: three abstractions of the same set of points



Worst-case time cost per operation wrt. number of variables :

polyhedra : exponential

octagons : cubic

intervals : linear

The Apron Project

Apron = Analyse de programmes numériques

Action Concertée Incitative "Sécurité et Informatique" (ACI SI)

October 2004 – October 2007

Partners

- École des Mines (CRI), coordinator : François Irigoin
- Verimag (Synchrone team)
- IRISA (VERTECS project)
- École normale supérieure
- École Polytechnique

Project Goals

Theoretical side

Advance the research on numerical abstract domains.

Practical side

Design and implement a library providing:

- ready-to-use numerical abstract domains under a common API easing the design of new analysers
- a platform for integration and comparison of new domains
- teaching, demonstration, dissemination tools

Steams from the fact that current implementations

- have incompatible API
- sometimes have very low-level API
- sometimes lack important features (transfer functions)
- often duplicate code

The Apron Library

Current Status of the Library

```
Available at : http://apron.cri.ensmp.fr/library/
```

- released under the LGPL licence
- 52 000 lines of C (v 0.9.8, not counting language bindings)
- main programmers : Bertrand Jeannet & Antoine Miné

Currently Available Domains

- polyhedra (NewPolka & PPL)
- linear equalities
- octagons
- intervals
- congruence equalities (PPL)
- reduced product of polyhedra and congruence equalities

Current Language Bindings: C, C++, OCaml

The implementation effort continues.

Implementation Choices

- C programming language for the kernel
- domain-neutral API and concrete data-types
- two-level API:
 - level 0 : abstracts $\mathbb{Z}^p \times \mathbb{R}^q$
 - ullet level 1: abstracts $(\mathtt{Var}_{\mathbb{Z}} o \mathbb{Z}) imes (\mathtt{Var}_{\mathbb{R}} o \mathbb{R})$
- functional and imperative transfer functions
- thread-safe
- exception mechanism (API errors, out-of-memory, etc.)
- user-definable options (trade-off precision/cost)
- (limited) object orientation (abstract data-types)

Implementation Choices

User-implementor contract:

- a domain must provide all sound transfer functions
- but the functions may be non-exact and non-optimal.

To add a new domain:

- only level 0 API to implement
- fallback functions provided
- ready-to-use convenience libraries
 - numbers (machine int, float, GMP, MPFR)
 - intervals
 - linearization
 - reduced product

 \Longrightarrow only a small core of functions actually needs to be implemented

API Types : Numbers

API Types:

concrete data-types used by the user to call the library $(\neq \text{types used internally by domain implementations})$

API types come with (scarce) support functions (mainly constructors, destructors, printing)

- Scalar constants ap_scalar_t
 - arbitrary precision rationals (GMP)
 - IEEE doubles
 - $+\infty$, $-\infty$
 - (to come) arbitrary precision floats (MPFR)
- Coefficients ap_coeff_t
 - either a scalar
 - or an interval (with scalar bounds)
 - a coefficient represents a set of constant scalars

Level 0 Affine Expressions and Constraints

<u>Level 0</u>: "variables" are dimension indices, starting from 0 p dimensions in \mathbb{Z} , followed by q dimensions in \mathbb{R}

- Affine expressions ap_linexpr0_t
 - $\ell \stackrel{\text{def}}{=} c + \sum_{i} c_{i} X_{i}$
 - c and c_i are ap_coeff_t coefficients
 - either dense representation (array) or sparse representation (ordered list of pairs (i, c_i))
 - functions to modify, resize, permute, etc.
- Affine constraints ap_lincons0_t
 - ullet equality constraints : $\ell=0$
 - inequality constraints : $\ell \geq 0$ or $\ell > 0$
 - disequality constraints : $\ell \neq 0$
 - congruence constraints : $\ell \equiv 0$ [i]

Non-scalar coefficients represent non-deterministic choices we actually represent sets of expressions and constraints

Level 0 Expressions and Constraints

- Expression trees ap_texpr0_t
 - variable indices and coefficients at the leaves
 - operators include : +, −, ×, /, mod, √
 - optional rounding to Z or IEEE floats of various size
 - optional rounding direction to $+\infty$, $-\infty$, 0, nearest,?
 - operations : variable substitution, dimension reordering, etc.
- Constraints ap_tcons0_t
 - equality constraints : t = 0
 - inequality constraints : t > 0 or t > 0
 - disequality constraints : $t \neq 0$
 - congruence constraints : $t \equiv 0$ [i]

As before, we actually represent expression and constraint sets.

Level 0 Generators and Arrays

• Generators ap_generator0_t

```
• vertices : \{\vec{v}\}

• lines : \{\lambda \vec{v} \mid \lambda \in \mathbb{R}\}

• rays : \{\lambda \vec{v} \mid \lambda \in \mathbb{R}, \lambda \geq 0\}

• modular lines : \{\lambda \vec{v} \mid \lambda \in \mathbb{Z}\}

• modular rays : \{\lambda \vec{v} \mid \lambda \in \mathbb{N}\}
```

where all coefficients in \vec{v} must be scalar.

• Arrays ap_xxx_array_t

- hold a size and a pointer to a C array
- simplify memory management (allocation, resize, free)
- arrays for intervals, (affine) constraints, and generators

Level 1 Variables and Environments

<u>Level 1</u>: uses variable names instead of indices.

- Variable names ap_var_t
 - generic type : void*
 - totally ordered, by user-definable compare function
 - user-definable memory management (copy, free)
 - default implementation : C strings
- Environments ap_environment_t
 - ordered variable list, with integer or real type
 ⇒ defines a mapping names→indices
 - addition, removal, renaming of variables (the library maintains the mapping for us)
 - all level 1 types store an environment
 - environments are reference counted
 - the compatibility of environments is checked

Abstract Elements

Abstract elements ap_abstract0_t

Abstract data-type representing a set of points in $\mathbb{Z}^p \times \mathbb{R}^q$.

Operations include:

- construction : empty set, full set
- set-theoretic : \cup , \cap
- predicates : =, \subseteq , constraint saturation
- property extraction: expression and variable bounds, conversion to constraints, generators, or box
- transfer functions : constraint addition, (parallel) assignment or substitution, time elapse
- dimension manipulation : addition, removal, forget, permutation, expansion, and folding
- widening

All functions take a manager as argument.

Managers

• Managers ap_manager_t

Class-like structure for abstract elements.

- each abstract domain library provides a manager factory
- holds pointers to actual functions (virtual dispatch)
- exposes user-definable parameters (e.g., precision control)
- exposes extra return values (e.g., exactness flag)
- provides static storage (thread-safety)
- provides dynamic typing

Precision

Operations can be non-exact and non-optimal.

- For predicates :
 - true means definitely true
 - false means maybe true, maybe false
- For property extractions:
 the returned constraints, generators, intervals may be loose.
- When returning an abstract element:
 the returned element may not be an exact / best abstraction.

Some possible causes of imprecision:

- limited expressiveness (abstract domain, constraints, etc.)
- widening (inherently imprecise)
- not implemented (no algorithm, or too inefficient)
- conversion between user and internal data-type
- the user asked for a fast, imprecise answer

Precision Control and Feedback

Precision Control

Per-function domain-specific algorithm slider in the manager :

- 0 : default precision
- MIN_INT...-1: more efficiency at the cost of precision
- 1...MAX_INT: more precision at the cost of efficiency

Precision Feedback

Set in the manager after each function call :

- flag_exact (exact predicate, exact property, exact abstraction)
- flag_best (tightest property, best abstraction)

```
(if flag_exact_wanted, flag_best_wanted set by the user)
```

Fail-safe

- per-function user-definable timeout
- per-function user-definable maximum object size

Construction

```
Full and empty abstract elements
ap_abstract0_t* ap_abstract0_top
          (ap_manager_t* man, size_t p, size_t q);
ap_abstract0_t* ap_abstract0_bottom
          (ap_manager_t* man, size_t p, size_t q);
```

Returns a newly allocated abstract element :

- man indicates the instance of the library used
- p is the number of integer dimensions
- q is the number of real dimensions
- top returns an abstraction of $\mathbb{Z}^p \times \mathbb{R}^q$
- bottom returns an abstraction of Ø

We keep track of which dimensions are integers. The result of all transfer functions is intersected with $\mathbb{Z}^p \times \mathbb{R}^q$.

Set-Theoretic Binary Operations

Computes \mathbf{r} such that $\gamma(\mathbf{r}) \supseteq \gamma(\mathbf{a1}) \cup \gamma(\mathbf{a2})$

- destructive indicates an imperative version
 - if false, returns a newly allocated abstract element
 - if true, recycles the memory for a1

a2 is always preserved

- flag_exact indicates whether $\gamma(r) = \gamma(a1) \cup \gamma(a2)$
- flag_best indicates whether $\gamma(\mathbf{r}) = \min_{\subset} \{ \gamma(\mathbf{x}) \mid \mathbf{x} \in \mathcal{D}^{\sharp}, \ \gamma(\mathbf{x}) \supseteq \gamma(\mathtt{a1}) \cup \gamma(\mathtt{a2}) \}$

 $ap_abstract0_meet$ is similar, but for \cap .

Set-Theoretic N-Aray Operations

Returns a newly allocated abstract element \mathbf{r} such that :

$$\gamma(\mathbf{r}) \supseteq \bigcup_{0 \le i < \text{size}} \gamma(\mathsf{tab[i]})$$

 $ap_abstract0_meet_array$ is similar, but for \cap .

Note: why do we need _array versions?

- may be more efficient than several ap_abstract0_join
- different meaning for flag_exact and flag_best

Adding Constraints

Example : adding arbitrary constraints

Definitions

- ullet semantics of a deterministic constraint : $[\![c]\!]: \mathcal{D} \to \{\mathtt{t},\mathtt{f}\}$
- each c[i] represents a set $\beta(c[i])$ of deterministic constraints

meet_tcons_array computes an abstract element r such that :

$$\begin{array}{ll} \gamma(\mathbf{r}) & \supseteq & \{ \ \vec{x} \in \gamma(\mathbf{a}) \mid \forall \mathbf{i}, \ \exists c \in \beta(\mathbf{c[i]}), \ \llbracket c \rrbracket(\vec{x}) = \mathtt{true} \ \} \\ & = & \bigcup_{\forall \mathbf{i}, \ c_i \in \beta(\mathbf{c[i]})} \{ \ \vec{x} \in \gamma(\mathbf{a}) \mid \forall \mathbf{i}, \ \llbracket c_\mathbf{i} \rrbracket(\vec{x}) = \mathtt{true} \ \} \end{array}$$

It models the semantics of tests.

Constraint Saturation

Example: testing an arbitrary constraint

```
bool ap_abstract0_sat_tcons
  (ap_manager_t* man, ap_abstract0_t* a, ap_tcons0_t* c);
```

Returns true if it can prove that :

$$\forall \vec{x} \in \gamma(a), \ \forall c \in \beta(c), \ [\![c]\!](\vec{x}) = \text{true}$$

If it returns false then:

- if flag_exact=true, then $\exists \vec{x} \in \gamma(\mathbf{a}), \exists c \in \beta(\mathbf{c}), [\![c]\!](\vec{x}) = \text{false}$
- otherwise, don't know

Note: saturation of a constraint we just added may return false

- due to over-approximation
- or due to non-determinism

Assignments

Semantics of an expression : $\llbracket \mathbf{e} \rrbracket : \mathcal{D} \to \mathcal{P}(\mathbb{R})$

 $assign_texpr$ computes an abstract element r such that :

$$\gamma(\mathbf{r}) \supseteq \{ \ x[\mathbf{v}_{\mathtt{dim}} \mapsto \mathbf{v}] \mid \vec{x} \in \gamma(\mathbf{a}), \ \mathbf{v} \in [\![\mathbf{e}]\!](\vec{x}) \ \} \cap \gamma(\mathtt{dst})$$

dst (optional) is used to refine the result according to some a priori knowledge of the result.

(often more precise in the abstract than calling meet afterwards)

Substitutions

substitute_texpr computes an abstract element r such that :

$$\gamma(\mathbf{r}) \supseteq \{ \ \vec{x} \mid \exists v \in [\mathbf{e}](\vec{x}), \ \vec{x}[\mathbf{v}_{\mathtt{dim}} \mapsto v] \in \gamma(\mathbf{a}) \ \} \cap \gamma(\mathtt{dst})$$
 (intuitively, if $\gamma(\mathbf{a}) \models \mathbf{c} \ \mathsf{then} \ \gamma(\mathbf{r}) \models \mathbf{c}[\mathbf{v}_{\mathtt{dim}}/\mathbf{e}])$

It models the backwards semantics of assignments.

Parallel Assignments and Substitutions

```
Example: parallel assignment of arbitrary expressions

ap_abstract0_t* ap_abstract0_assign_texpr_array

(ap_manager_t* man, bool destructive,

ap_abstract0_t* a, ap_dim_t* dim,

ap_texpr0_t** e, size_t size,

ap_abstract0_t* dst);
```

```
assign_texpr_array computes an abstract element r such that : \gamma(\mathbf{r}) \supseteq \{ \vec{x}[\mathbf{v}_{\mathtt{dim}[\mathbf{i}]} \mapsto v_i] \mid \vec{x} \in \gamma(\mathbf{a}), \, \forall i, \, v_i \in [\mathbf{e}[\mathbf{i}]](\vec{x}) \} \cap \gamma(\mathtt{dst})
```

All assignments take place at the same time.

Could be emulated using assign_texpr at the cost of using temporary variables.

Expand and Fold

Expand and fold

expand adds n copies of v_{dim} to a:

$$\gamma(\mathbf{r}) \supseteq \{ (\vec{x}, v_1, \dots, v_n) \mid \vec{x} \in \gamma(\mathbf{a}), \, \forall i, \, \vec{x}[\mathbf{v}_{\mathtt{dim}} \mapsto v_i] \in \gamma(\mathbf{a}) \}$$

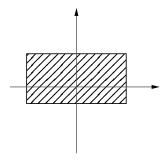
fold merges n variables into $v_{dim[0]}$:

$$\gamma(\mathbf{r}) \supseteq \bigcup_{0 \le i < \mathbf{n}} \{ \operatorname{proj}_{i}(\vec{x}) \mid \vec{x} \in \gamma(\mathbf{a}) \}$$

where $proj_i$ maps dimension dim[i] to dim[0] and projects out dimensions dim[k], $k \neq i$.

Models arrays and weak updates [Gopan-DiMaio-Dor-Reps-Sagiv04].

The Interval Domain



Constraints of the form $v_i \in [a_i, b_i]$.

The Interval Domain

Abstract representation:

Associate two bounds for each variable, can be:

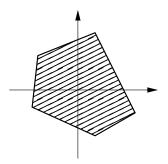
- GMP rationals, enriched with $\pm \infty$, or
- IEEE double

Abstract transfer functions:

Uses interval arithmetics.

IEEE double bounds are rounded correctly.

The Polyhedron Domain



Constraints of the form $\sum_{i} \alpha_{i} \mathbf{v}_{i} \geq \beta$.

The Polyhedron Domain: Representation

Abstract representation:

We use the double description method:

- conjunction of affine constraints $\bigwedge_{j} (\sum_{i} \alpha_{ij} v_{i} \geq \beta_{j})$
- sum of generators

$$\{\sum_{i} \lambda_{i} \vec{v}_{i} + \sum_{j} \mu_{j} \vec{r}_{j} \mid \lambda_{i}, \mu_{j} \geq 0, \sum_{i} \lambda_{i} = 1\}$$

where α_{ij} , β_j , \vec{v}_i , \vec{r}_j are GMP rationals.

Optimization: equalities and lines are encoded specially.

The Polyhedron Domain: Transfer Functions

Abstract transfer functions:

The main algorithm is the Chernikova-LeVerge algorithm :

- switches from one representation to the other
- minimizes both representations
- tests for emptiness

Most transfer functions are easy using the right representation :

- intersection (constraints), convex hull (generators)
- affine assignments, substitutions, constraint addition
- classical widening [Halbwachs-79]
- etc.

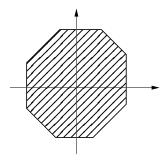
Optimization : equalities and lines use Gauss elimination.

The Polyhedron Domain: Extra Features

Advanced features include :

- strict constraints
 (encoded through an extra slack variable)
- approximation
 rotate or remove constraints to reduce the size of coefficients
 (activated through algorithm)
- integer tightening tighten existing constraints involving integer variables (polynomial, non-complete algorithm) (activated through algorithm)
- non-deterministic and non-linear transfer functions expressions are linearized into $[a_0, b_0] + \sum_i c_i v_i$ which can be treated directly

The Octagon Domain



Constraints of the form $\pm \mathbf{v}_i \pm \mathbf{v}_j \leq c$.

The Octagon Domain: Representation

Abstract representation :

A set of constraints is represented as a square matrix :

- $\mathbf{m}_{2i,2j}$ is an upper bound for $\mathbf{v}_j \mathbf{v}_i$
- $\mathbf{m}_{2i+1,2j}$ is an upper bound for $\mathbf{v}_j + \mathbf{v}_i$
- $\mathbf{m}_{2i,2j+1}$ is an upper bound for $-\mathbf{v}_i \mathbf{v}_i$
- $\mathbf{m}_{2i+1,2j+1}$ is an upper bound for $-\mathbf{v}_j + \mathbf{v}_i$

Upper bounds may be encoded using either:

- GMP integers, enriched with $+\infty$
- GMP rationals, enriched with $+\infty$
- IEEE double or long double

Optimization : only the lower-left triangle is actually stored.

The Octagon Domain: Transfer Functions

<u>Abstract transfer functions :</u>

The main algorithm is the Floyd-Warshall algorithm :

- shortest-path closure
- propagates and tightens all constraints
- tests for emptiness

Most transfer functions are then easy:

- intersection : point-wise min
- join : point-wise max on closed matrices
- ullet assignments, substitutions of expressions of the form $\pm {
 m v}_i + c$
- adding constraints of the form $\pm v_i \pm v_i \le c$
- etc.

The Octagon Domain: Extra Features

Advanced features include :

non-deterministic affine transfer functions

e.g. assignment
$$v_k \leftarrow [a_0, b_0] + \sum_i [a_i, b_i] v_i$$

- extract bounds $[v_i^-, v_i^+]$ for each variable v_i
- evaluate $[a_0, b_0] + \sum_i [a_i, b_i] \times [v_i^-, v_i^+]$ in interval arithmetics \implies new bounds for v_k
- for each $j \neq k$, $\epsilon = \pm 1$, evaluate $[a_0, b_0] + \sum_{i \neq j} [a_i, b_i] \times [v_i^-, v_i^+] + [a_j + \epsilon, b_j + \epsilon] \times [v_j^-, v_j^+] \implies$ new bounds for $v_k + \epsilon v_j$

(polynomial algorithm, not best abstraction)

• non-linear transfer functions expressions are linearized into $[a_0, b_0] + \sum_i [a_i, b_i] v_i$ which can be treated as above.

Linearization: Principle

Core Idea: abstract expressions

Replace e with e' such that : $\forall \vec{x} \in \gamma(a), [e'](\vec{x}) \supseteq [e](\vec{x}), \text{ then } :$

- $\{v \leftarrow e'\}^{\sharp}(a)$ is a sound abstraction of $\{v \leftarrow e\}(\gamma(a))$
- $\{e' \geq 0\}^{\sharp}(a)$ is a sound abstraction of $\{e \geq 0\}(\gamma(a))$
- etc.

We choose expressions of the form $\mathbf{e}' \stackrel{\text{def}}{=} [a_0, b_0] + \sum_i [a_i, b_i] \mathbf{v}_i$:

- affine expressions are easy to manipulate
- non-deterministic intervals offer abstraction opportunities
- such expressions can be swallowed by many domains :
 - the octagon domain
 - the polyhedron domain, after further abstraction into $[a_0, b_0] + \sum_i c_i \mathbf{v}_i$

Antoine Miné

Linearization: Algorithm

Interval affine forms is enriched with the following algebra:

- point-wise interval addition and subtraction
- point-wise interval multiplication or division by an interval
- intervalization, *i.e.*, evaluation into a single interval (requires bounds on all variables)

We proceed by structural induction on the expression [Miné-04] :

- real + and map directly to affine form addition, subtraction
- real × and / first intervalize one argument
- \bullet real $\sqrt{}$ perform interval arithmetics on the intervalized argument
- rounding and casting introduce rounding errors by
 - enlarging variable coefficients with a relative error, and/or
 - adding absolute error intervals

The Interproc Analyzer

The Interproc Analyzer

Interproc: showcase analyzer for Apron

- analyzer for a toy language
- infers numerical properties using Apron
- written in OCaml
- authors : Gaël Lalire, Mathias Argoud, and Bertrand Jeannet
- available under LGPL at http://pop-art.inrialpes.fr/people/bjeannet/ bjeannet-forge/interproc/index.html
- can also be used on-line

Language

Support for :

- while loops and tests
- recursive procedures and functions
- integers and reals variables
- all operators from ap_texpr0_t, including float rounding

But:

- no arrays
- no dynamic memory allocation
- no I/O, except random

Principle of the Analysis

The program is converted into an equation system that is solved by a generic solver that implements :

- parametrization by the choice of an abstract domain
- increasing iterations with (delayed) widening
- decreasing iterations
- iteration ordering [Bourdoncle-93]
- guided analysis [Gopan-Reps-07]
- forward-backward combination

Demonstration

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi