The Apron Library

CEA — December the 10th, 2007

Antoine Miné
CNRS, Ecole normale supérieure

CEA Seminar
December the 10th, 2007

The Apron Library

Antoine Miné

p.1/54

Introduction

Outline

@ Introduction

e Main goals
e Theoretical background
e The APRON project

@ The Apron Library

e General description

o Library API (data-types, abstract functions)

o Abstract domain examples (intervals, octagons, polyhedra)
e Linearization

@ The Interproc Analyzer

e Description
o Demonstration

CEA — December the 10th, 2007 The Apron Library Antoine Miné p.2 /54

Introduction

Introduction Main Goals

Static Analysis

Goal : Static Analysis

Discover properties of a program statically and automatically.

Applications :

@ compilation and optimisation, e.g. :
e array bound check elimination
e alias analysis

o verification and debugging, e.g. :
e infer invariants
e prove the absence of run-time errors
(division by zero, overflow, invalid array access)
e prove functional properties

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 4 /54

Introduction Main Goals

Invariant Discovery Examples

Insertion Sort

for i=1 to 99 do
p := T[il; j := i+1;
while j <= 100 and T[j] < p do
T[j-11 := T[jl; j := j+1;
end;

T[j-1]1 := p;
end;

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 5/ 54

Introduction Main Goals

Invariant Discovery Examples

Interval analysis :

Insertion Sort

for i=1 to 99 do

ie[1,99]

p := T[il; j := i+1;

i€[1,99], j €[2,100]

while j <= 100 and T[j] < p do
i€ [1,99], j € [2,100]
T[j-11 := T[jl; j := j+1;
i€ [1,99], j€[3,101]

end;

i€[1,99], j €[2,101]
T[j-1]1 := p;
end;

= there is no out of bound array access

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p.5 /54

Introduction Main Goals

Invariant Discovery Examples

Linear relation analysis :

Insertion Sort

for i=1 to 99 do

i€ [1,99]

p := T[il; j := i+1;

ie[1,99], j=i+1

while j <= 100 and T[j] < p do
i€[1,99], i+1<j <100
T[j-11 := T[jl; j := j+1i;
ie€[1,99], i+2<j <101

end;
ie[1,99],i+1<j<101
T[j-1]1 := p;

end;

= there is no out of bound array access

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p.5 /54

Introduction Theoretical Background

Theoretical Background

Abstract Interpretation : unifying theory of program semantics

Provide theoretical tools to design and compare
static analyses that :

@ always terminate
@ are sound by construction (no behavior is omitted)

@ are approximate (solve undecidability and efficiency issues)

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 6 / 54

Introduction Theoretical Background

Concrete Semantics

Concrete Semantics :
most precise mathematical expression of the program behavior

Example : from program to equation system

entry--__

e 4 X, = {X:=7(0,10) [}(A1)
X :v(o,lo)iz X3 ={Y =100 }(A;) U

¥:=100 {5 x<0 {Y:=Y+10}(Xs)

R Tt X=X 2 0)(x)

X>:Ol 6 _ v _
X = X = X—1}(X)
4 Xo =X < 0}(A3)
X=X 1(5 Y:=Y+10
[]
Where :

e X is a set of states, here X; € P({X,Y} - Z) =D
@ { - |} model the effect of tests and assignments
@ the recursive system has a unique least solution (Ifp)

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p.7 /54

Introduction Theoretical Background

Abstract Domains

Undecidability Issues :

@ the concrete domain D is not computer-representable
e { - [} and U are not computable
@ Ifp is not computable

— we work in a abstract domain D' instead

Definition of an abstract domain :
e D' : a set of computer-representable elements
@ a partial order C* on D!
e v : D! — D, monotonic, gives a meaning to abstract elements
o { - }¥:D! - D! and U : (DF)2 — DF are abstract sound
counterparts to { - |} and U :
VX eDE (vof P)X) 2 (- bo)(X)
VX,V e Dt (X U Y) D (X)) uy(Y)
V : (D%)?2 — DF abstracts U and enforces termination :
VY €D Xy Yy, Xipr & XV Yigq converges finitely

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 8 /54

Introduction Theoretical Background

Abstract Semantics

The concrete equation system is replaced with an abstract one :

oY gy X 3f {x = 7(0,10) ¥ (XF)
x::?(o,10>l2 XF O Y= 100 (1) U
Y:=100T3 X<0 {IYi:Y-l-lO[}ﬁ(Xsﬁ)
% | Y2z o)
o nggi{]X:zxglpgﬁ(xf)
X:=X—1< 5)Yi=Y+10 Xg 2* {x < 0}7(A3)
[]

A solution can be found in finite time by iterations :

@ start from Xoﬁ L X,?il 1t

@ update all Xf at each iteration : e.g. X, £ {x > Ol}ﬁ(Xéﬁ)

def

@ use widening at loop heads : e.g.
Xl g (Y= 100 PR U Y = Y+ 10 PHAH)
It is a sound abstractlon of the concrete semantics Xj.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 9/ 54

Introduction Theoretical Background

Numerical Abstract Domains

Important case :

When D! abstract D £ P(Var — I) and
@ Var is a finite set of variables

o I is a numerical set, e.g., Z or R

Applications :

@ discover numerical properties on program variables

@ prove the absence of a large class of run-time errors
(division by 0, overflow, out of bound array access, etc.)

@ parametrize non-numerical analyses
(pointer analysis, shape analysis)

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p. 10 / 54

Introduction Theoretical Background

Some Existing Numerical Abstract Domains

Intervals Simple Congruences
X; € [a,-, b,'] Xi = a; [bi]
[Cousot-Cousot-76] [Granger-89]
Linear Equalities Linear Congruences
diaiXi=p >iaiXi = B[]
[Karr-76] [Granger-91]

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 11 / 54

Introduction Theoretical Background

Some Existing Numerical Abstract Domains (cont.)

Polyhedra Octagons
YiaiXi > EXi £ X <3
[Cousot-Halbwachs-78] [Miné-01]
O

Ellipsoids Varieties
aX2+ Y24 4XY <§ P(X) =0, P € R[Var]

[Feret-04] [Sankaranarayanan-Sipma-Manna-04]

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 12 / 54

Introduction Theoretical Background

Precision vs. Cost Tradeoff

Example : three abstractions of the same set of points

Worst-case time cost per operation wrt. number of variables :

@ polyhedra : exponential
@ octagons : cubic

@ intervals : linear

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 13 / 54

Introduction The Apron Project

The Apron Project

Apron = Analyse de programmes numériques
Action Concertée Incitative “Sécurité et Informatique” (ACI SI)

October 2004 — October 2007

e Ecole des Mines (CRI), coordinator : Frangois Irigoin
e Verimag (Synchrone team)

o IRISA (VERTECS project)
°
°

Ecole normale supérieure

Ecole Polytechnique

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 14 / 54

Introduction The Apron Project

Project Goals

@ Theoretical side

Advance the research on numerical abstract domains.

@ Practical side

Design and implement a library providing :

e ready-to-use numerical abstract domains under a common API
easing the design of new analysers

e a platform for integration and comparison of new domains

e teaching, demonstration, dissemination tools

Steams from the fact that current implementations
e have incompatible API
e sometimes have very low-level API
e sometimes lack important features (transfer functions)
e often duplicate code

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 15 / 54

The Apron Library

The Apron Library

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 16 / 54

The Apron Library General Description

Current Status of the Library

Available at : http://apron.cri.ensmp.fr/library/

released under the LGPL licence
52 000 lines of C (v 0.9.8, not counting language bindings)
main programmers : Bertrand Jeannet & Antoine Miné

Currently Available Domains

polyhedra (NewPolka & PPL)

linear equalities

octagons

intervals

congruence equalities (PPL)

reduced product of polyhedra and congruence equalities

Current Language Bindings : C, C++, OCaml

The implementation effort continues.

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p. 17 / 54

http://apron.cri.ensmp.fr/library/

The Apron Library General Description

Implementation Choices

C programming language for the kernel

domain-neutral APl and concrete data-types
two-level API :

o level O : abstracts ZP x RY
o level 1 : abstracts (Vary — Z) x (Varg — R)

functional and imperative transfer functions
thread-safe
exception mechanism (API errors, out-of-memory, etc.)

user-definable options (trade-off precision/cost)

(limited) object orientation (abstract data-types)

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 18 / 54

The Apron Library General Description

Implementation Choices

User—implementor contract :

@ a domain must provide all sound transfer functions

@ but the functions may be non-exact and non-optimal.

To add a new domain :

@ only level 0 API to implement
o fallback functions provided

@ ready-to-use convenience libraries

e numbers (machine int, float, GMP, MPFR)
e intervals

e linearization

e reduced product

= only a small core of functions actually needs to be implemented

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 19 / 54

The Apron Library Library API

API Types : Numbers

API Types :

concrete data-types used by the user to call the library
(# types used internally by domain implementations)

API types come with (scarce) support functions
(mainly constructors, destructors, printing)

@ Scalar constants ap_scalar_t

o arbitrary precision rationals (GMP)

o |IEEE doubles

e 400, —00

o (to come) arbitrary precision floats (MPFR)

o Coefficients ap_coeff_t

e either a scalar
e or an interval (with scalar bounds)

a coefficient represents a set of constant scalars

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p. 20 / 54

The Apron Library Library API

Level 0 Affine Expressions and Constraints

Level 0 : “variables” are dimension indices, starting from 0
p dimensions in Z, followed by g dimensions in R

@ Affine expressions ap_linexprO_t

o ! X c+>cXs
e c and ¢; are ap_coeff_t coefficients
o either dense representation (array)
or sparse representation (ordered list of pairs (i, ¢;))
e functions to modify, resize, permute, etc.

@ Affine constraints ap_lincons0O_t
e equality constraints : £ =0
e inequality constraints : £ >0or ¢ >0
e disequality constraints : £ # 0
e congruence constraints : ¢ = 0 [f]

Non-scalar coefficients represent non-deterministic choices
= we actually represent sets of expressions and constraints

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p. 21 / 54

The Apron Library Library API

Level 0 Expressions and Constraints

@ Expression trees ap_texprO_t

o variable indices and coefficients at the leaves

operators include : +, —, %, /, mod,

optional rounding to Z or IEEE floats of various size
optional rounding direction to +00, —o0, 0, nearest, ?
operations : variable substitution, dimension reordering, etc.

e Constraints ap_tcons0_t

e equality constraints : t =0

e inequality constraints : t > 0or t >0
e disequality constraints : t # 0

e congruence constraints : t = 0 [/]

As before, we actually represent expression and constraint sets.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 22 / 54

The Apron Library Library API

Level O Generators and Arrays

o Generators ap_generatorO_t

vertices : { V}

lines: {AWV|AeR}

rays: { \W|AER, A >0}
modular lines : {A\V| A€ Z}
modular rays : { A\V| A € N}

where all coefficients in Vv must be scalar.

@ Arrays ap_xxx_array_t

e hold a size and a pointer to a C array
o simplify memory management (allocation, resize, free)
e arrays for intervals, (affine) constraints, and generators

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 23 / 54

The Apron Library Library API

Level 1 Variables and Environments

Level 1 : uses variable names instead of indices.

o Variable names ap_var_t

generic type : void*

totally ordered, by user-definable compare function
user-definable memory management (copy, free)
default implementation : C strings

@ Environments ap_environment_t

e ordered variable list, with integer or real type
= defines a mapping names—indices

e addition, removal, renaming of variables
(the library maintains the mapping for us)

o all level 1 types store an environment
- environments are reference counted
- the compatibility of environments is checked

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 24 / 54

The Apron Library Library API

Abstract Elements

@ Abstract elements ap_abstractO_t

Abstract data-type representing a set of points in ZP x R9.

Operations include :

e construction : empty set, full set

e set-theoretic : U, N

e predicates : =, C, constraint saturation

e property extraction : expression and variable bounds,
conversion to constraints, generators, or box

e transfer functions : constraint addition, (parallel) assignment
or substitution, time elapse

e dimension manipulation : addition, removal, forget,
permutation, expansion, and folding

e widening

All functions take a manager as argument.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 25 / 54

The Apron Library Library API

Managers

@ Managers ap_manager_t

Class-like structure for abstract elements.

e each abstract domain library provides a manager factory
o holds pointers to actual functions (virtual dispatch)
e exposes user-definable parameters (e.g., precision control)
e exposes extra return values (e.g., exactness flag)
e provides static storage (thread-safety)
e provides dynamic typing

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p. 26 / 54

The Apron Library Library API

Precision

Operations can be non-exact and non-optimal.

@ For predicates :
e true means definitely true
e false means maybe true, maybe false

@ For property extractions :
the returned constraints, generators, intervals may be loose.

@ When returning an abstract element :
the returned element may not be an exact / best abstraction.

Some possible causes of imprecision :

@ limited expressiveness (abstract domain, constraints, etc.)
@ widening (inherently imprecise)

@ not implemented (no algorithm, or too inefficient)

@ conversion between user and internal data-type

@ the user asked for a fast, imprecise answer

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 27 / 54

The Apron Library Library API

Precision Control and Feedback

Precision Control

Per-function domain-specific algorithm slider in the manager :
@ 0 : default precision
@ MIN_INT...-1: more efficiency at the cost of precision
@ 1...MAX_INT : more precision at the cost of efficiency

Precision Feedback

Set in the manager after each function call :
o flag_exact (exact predicate, exact property, exact abstraction)
o flag best (tightest property, best abstraction)

(if flag_exact_wanted, flag_best_wanted set by the user)

Fail-safe
@ per-function user-definable timeout
@ per-function user-definable maximum object size

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 28 / 54

The Apron Library Abstract Element Functions

Construction

Full and empty abstract elements

ap_abstractO_t* ap_abstractO_top
(ap_manager_t* man, size_t p, size_t q);

ap_abstractO_t* ap_abstractO_bottom
(ap_manager_t* man, size_t p, size_t q);

Returns a newly allocated abstract element :

@ man indicates the instance of the library used
@ p is the number of integer dimensions

@ q is the number of real dimensions

@ top returns an abstraction of ZP x R?

@ bottom returns an abstraction of ()

We keep track of which dimensions are integers.

The result of all transfer functions is intersected with ZP x R<.
CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 29 / 54

The Apron Library Abstract Element Functions

Set-Theoretic Binary Operations

Example : binary join

ap_abstractO_t* ap_abstractO_join
(ap_manager_t* man, bool destructive,
ap_abstractO_t* al, ap_abstractO_t* a2);

Computes r such that v(r) D y(al) U~(a2)

@ destructive indicates an imperative version

e if false, returns a newly allocated abstract element
e if true, recycles the memory for al

a2 is always preserved
e flag_exact indicates whether y(r) = v(al) U y(a2)
o flag_best indicates whether
(r) = minc {7(x) | x € DF, 4(x) 2 ~(al) Ur(a2) }
ap_abstractO_meet is similar, but for N.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 30 / 54

The Apron Library Abstract Element Functions

Set-Theoretic N-Aray Operations

Example : n-aray join

ap_abstractO_t* ap_abstractO_join_array
(ap_manager_t* man, ap_abstractO_t** tab, size_t size);

Returns a newly allocated abstract element r such that :

yr) 2 |J eapli])

0<i<size

ap_abstractO_meet_array is similar, but for N.

Note : why do we need _array versions?
@ may be more efficient than several ap_abstractO_join

o different meaning for flag_exact and flag_best

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 31 / 54

The Apron Library Abstract Element Functions

Adding Constraints

Example : adding arbitrary constraints

ap_abstractO_t* ap_abstractO_meet_tcons_array
(ap_manager_t* man, bool destructive,
ap_abstractO_t* a, ap_tconsO_array_t* c);

Definitions
@ semantics of a deterministic constraint : [c] : D — {t,f}

@ each c[i] represents a set (3(c[i]) of deterministic constraints

meet_tcons_array computes an abstract element r such that :

v(r) 2 {Xenq(a)|Vi, Ic € B(c[i]), [](X) = true }
- U { X er(a)| Vi, [¢;](X) = true }

Vi, ¢i€f(c[i])

It models the semantics of tests.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 32 / 54

The Apron Library Abstract Element Functions

Constraint Saturation

Example : testing an arbitrary constraint

bool ap_abstractO_sat_tcons
(ap_manager_t* man, ap_abstractO_t* a, ap_tconsO_t* c);

Returns true if it can prove that :

VX € y(a), Ve € B(c), [c](X) = true

If it returns false then :
o if flag_exact=true, then
X € y(a), Ic € B(c), [c](X) = false
@ otherwise, don't know

Note : saturation of a constraint we just added may return false
@ due to over-approximation

@ or due to non-determinism
CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 33 / 54

The Apron Library Abstract Element Functions

Assignments

Example : assigning an arbitrary expression

ap_abstractO_t* ap_abstractO_assign_texpr
(ap_ma.nager_t* man, bool destructive,
ap_abstractO_t* a, ap_dim_t dim,
ap_texprO_t* e, ap_abstractO_t* dst);

Semantics of an expression : [e] : D — P(R)

assign_texpr computes an abstract element r such that :
Y(r) 2 { X[Vain = v] | X €7(a), v € [e](X) } Ny(dst)

dst (optional) is used to refine the result according to some a
priori knowledge of the result.
(often more precise in the abstract than calling meet afterwards)

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 34 / 54

The Apron Library Abstract Element Functions

Substitutions

Example : substituting an arbitrary expression

ap_abstractO_t* ap_abstractO_substitute_texpr
(ap_manager_t* man, bool destructive,
ap_abstractO_t* a, ap_dim_t dim,
ap_texprO_t* e, ap_abstractO_t* dst);

substitute_texpr computes an abstract element r such that :
Y(r) 2 { X[v € [e](X), X[vain — v] € 7(a) } Ny(dst)
(intuitively, if y(a) = c then y(r) = c[vain/€])

It models the backwards semantics of assignments.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 35 / 54

The Apron Library Abstract Element Functions

Parallel Assignments and Substitutions

Example : parallel assignment of arbitrary expressions

ap_abstractO_t* ap_abstractO_assign_texpr_array
(ap_manager_t* man, bool destructive,
ap_abstractO_t* a, ap_dim_t* dim,
ap_texprO_t** e, size_t size,
ap_abstractO_t* dst);

assign_texpr_array computes an abstract element r such that :
V(r) 2 { X[Vans) = vil | X € (), Vi, vi € [e[i][(X) } N~(dst)

All assignments take place at the same time.

Could be emulated using assign_texpr
at the cost of using temporary variables.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 36 / 54

The Apron Library Abstract Element Functions

Expand and Fold

Expand and fold

ap_abstractO_t* ap_abstractO_expand
(ap_manager_t* man, bool destructive,
ap_abstractO_t* a, ap_dim_t dim, size_t n);
ap_abstractO_t* ap_abstractO_fold
(ap_manager_t* man, bool destructive,
ap_abstractO_t* a, ap_dim_t dim*, size_t n);

expand adds n copies of vgiy to a :

() 2{ (X, vi,...,w) | X € v(a), Vi, X[vain — vi] € v(2) }
fold merges n variables into vgiqo)

)2 [{prois(¥) | ¥ €(a) }
0<i<n

where proj; maps dimension dim[i] to dim[0] and projects out
dimensions dim[k], k # 1.
Models arrays and weak updates [Gopan-DiMaio-Dor-Reps-Sagiv04].

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 37 / 54

The Apron Library Domain Implementations

The Interval Domain

SIS
SN
LSS S S
VI IIIIIIIIIa
Vs
SN

Constraints of the form v; € [a;, b;].

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 38 / 54

The Apron Library Domain Implementations

The Interval Domain

Abstract representation :

Associate two bounds for each variable, can be :
@ GMP rationals, enriched with £o00, or
o |IEEE double

Abstract transfer functions :

Uses interval arithmetics.
IEEE double bounds are rounded correctly.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 39 / 54

-
=

Y

S

Constraints of the form >, ajv; > [3.

The Apron Library Domain Implementations

The Polyhedron Domain : Representation

Abstract representation :

We use the double description method :
e conjunction of affine constraints A\; (3_; avi > 3;)
@ sum of generators
{22 A+ 20 m57 | Aisp 20, 32,4 =11}

where «jj, 3}, Vi, r; are GMP rationals.

Optimization : equalities and lines are encoded specially.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 41 / 54

The Apron Library Domain Implementations

The Polyhedron Domain : Transfer Functions

Abstract transfer functions :

The main algorithm is the Chernikova—LeVerge algorithm :
@ switches from one representation to the other
@ minimizes both representations

@ tests for emptiness

Most transfer functions are easy using the right representation :

intersection (constraints), convex hull (generators)

o affine assignments, substitutions, constraint addition
@ classical widening [Halbwachs-79]
o

etc.

Optimization : equalities and lines use Gauss elimination.

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p. 42 / 54

The Apron Library Domain Implementations

The Polyhedron Domain : Extra Features

Advanced features include :

@ strict constraints
(encoded through an extra slack variable)

@ approximation
rotate or remove constraints to reduce the size of coefficients
(activated through algorithm)

@ integer tightening
tighten existing constraints involving integer variables
(polynomial, non-complete algorithm)
(activated through algorithm)

@ non-deterministic and non-linear transfer functions
expressions are linearized into [ag, bo] + >, civi
which can be treated directly

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 43 / 54

The Apron Library Domain Implementations

The Octagon Domain

Constraints of the form +v; £ v; < c.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 44 / 54

The Apron Library Domain Implementations

The Octagon Domain : Representation

Abstract representation :

A set of constraints is represented as a square matrix :
@ my;o; is an upper bound for v; — v;
@ my; 12 is an upper bound for v; + v;
@ my; ;1 is an upper bound for —v; — v;
(]

My 11241 is an upper bound for —v; + v;

Upper bounds may be encoded using either :
@ GMP integers, enriched with +o00
@ GMP rationals, enriched with +oo
o |EEE double or long double

Optimization : only the lower-left triangle is actually stored.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 45 / 54

The Apron Library Domain Implementations

The Octagon Domain : Transfer Functions

Abstract transfer functions :

The main algorithm is the Floyd-Warshall algorithm :
@ shortest-path closure
@ propagates and tightens all constraints

@ tests for emptiness

Most transfer functions are then easy :
@ intersection : point-wise min
@ join : point-wise max on closed matrices
@ assignments, substitutions of expressions of the form +v; + ¢
@ adding constraints of the form +v; +v; <c¢

@ etc.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 46 / 54

The Apron Library Domain Implementations

The Octagon Domain : Extra Features

Advanced features include :

@ non-deterministic affine transfer functions

e.g. assignment vy « [ag, bo] + > _;[ai, bi]v;

e extract bounds [v; , v;"] for each variable v;

o evaluate [ag, bo] + > _;[a, bj] x [v;, v;'] in interval arithmetics
— new bounds for v

o for each j # k, e = 41, evaluate
[a0, bo] + 2o ylar, bi] x [v; . vi']+ [aj + e, by + €] x [v;7, v/']
= new bounds for v, + €v;

(polynomial algorithm, not best abstraction)

@ non-linear transfer functions
expressions are linearized into [ag, bo] + D _,[ai, bi]vi
which can be treated as above.

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 47 / 54

The Apron Library

Linearization : Principle

Linearization

Core Idea : abstract expressions

Replace e with e’ such that : VX € y(a), [¢'](X) 2 [e](X), then :

e {v <« ¢'}*(a) is a sound abstraction of { v « e }(v(a))

o {& > 0}(a) is a sound abstraction of {e > 0}((a))
@ etc.

We choose expressions of the form ¢/ < [ag, bo] + >ilai, bilvi :
o affine expressions are easy to manipulate

@ non-deterministic intervals offer abstraction opportunities
@ such expressions can be swallowed by many domains :
e the octagon domain

o the polyhedron domain, after further abstraction into
[a0, bo] + >, civi

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 48 / 54

The Apron Library Linearization

Linearization : Algorithm

Interval affine forms is enriched with the following algebra :
@ point-wise interval addition and subtraction
@ point-wise interval multiplication or division by an interval

@ intervalization, i.e., evaluation into a single interval
(requires bounds on all variables)

We proceed by structural induction on the expression [Miné-04] :
@ real + and — map directly to affine form addition, subtraction
@ real x and / first intervalize one argument

o real Na perform interval arithmetics on the intervalized
argument
@ rounding and casting introduce rounding errors by

o enlarging variable coefficients with a relative error, and/or
e adding absolute error intervals

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 49 / 54

The Interproc Analyzer

The Interproc Analyzer

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 50 / 54

The Interproc Analyzer Description

The Interproc Analyzer

Interproc : showcase analyzer for Apron

analyzer for a toy language

infers numerical properties using Apron

written in OCaml

authors : Gaél Lalire, Mathias Argoud, and Bertrand Jeannet

available under LGPL at
http://pop-art.inrialpes.fr/people/bjeannet/
bjeannet-forge/interproc/index.html

@ can also be used on-line

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 51 / 54

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html

The Interproc Analyzer Description

Language

Support for :

while loops and tests
recursive procedures and functions
integers and reals variables

all operators from ap_texpr0_t, including float rounding

But :

no arrays
no dynamic memory allocation

no /O, except random

CEA — December the 10th, 2007 The Apron Library Antoine Miné

p. 52 / 54

The Interproc Analyzer Description

Principle of the Analysis

The program is converted into an equation system that is solved by
a generic solver that implements :

@ parametrization by the choice of an abstract domain
@ increasing iterations with (delayed) widening

@ decreasing iterations

e iteration ordering [Bourdoncle-93]

@ guided analysis [Gopan-Reps-07]

o forward-backward combination

CEA — December the 10th, 2007 The Apron Library Antoine Miné p. 53 / 54

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

	Introduction
	Main Goals
	Theoretical Background
	The Apron Project

	The Apron Library
	General Description
	Library API
	Abstract Element Functions
	Domain Implementations
	Linearization

	The Interproc Analyzer
	Description
	Demonstration

