
APRON
The APRON library

Version 0.9.12

by Bertrand Jeannet and the APRON team

i

Table of Contents

1 APRON Copying Conditions (LGPL) . 1

2 Introduction to APRON . 9

3 APRON Rationale and Functionalities . 11
3.1 General choices . 11
3.2 Functionalities of the interface at level 0 . 12
3.3 Functionalities of the interface at level 1 . 16

4 APRON Guidelines . 19
4.1 Installing APRON . 19
4.2 C Programming Guidelines . 19

4.2.1 C Headers and Libraries . 19
4.2.2 Naming conventions and Allocation/Deallocation schemes . 19
4.2.3 Allocating managers and setting options . 20
4.2.4 Sequel of the small example . 20
4.2.5 Typing issue in C . 21

4.3 OCaml Programming Guidelines . 22
4.4 How to make an existing library conformant to APRON ? . 22

5 Managers and Abstract Domains . 25
5.1 Managers (ap_manager.h) . 25

5.1.1 Datatypes . 25
5.1.2 Functions related to managers . 28

5.2 Box (box.h): intervals abstract domain . 28
5.2.1 Use of Box . 29
5.2.2 Allocating Box managers . 29

5.3 Oct: octagon abstract domain . 29
5.4 NewPolka (pk.h): convex polyhedra and linear equalities abstract domains 29

5.4.1 Use of NewPolka . 29
5.4.2 Allocating NewPolka managers and setting specific options 30
5.4.3 NewPolka standard options . 31

5.5 PPL (ap_ppl.h): convex polyhedra and linear congruences abstract domains 35
5.5.1 Use of APRON PPL . 35
5.5.2 Allocating APRON PPL managers . 35
5.5.3 APRON PPL standard options . 36

5.6 pkgrid (ap_pkgrid.h): reduced product of NewPolka convex polyhedra and
PPL linear congruences abstract domains . 36
5.6.1 Use of pkgrid . 36
5.6.2 Allocating pkgrid managers . 37

6 Scalars & Intervals & coefficients . 39
6.1 Scalars (ap_scalar.h) . 39

6.1.1 Initializing scalars . 39
6.1.2 Assigning scalars . 40

ii APRON 0.9.12

6.1.3 Converting scalars . 40
6.1.4 Comparing scalars . 40
6.1.5 Other operations on scalars . 41

6.2 Intervals (ap_interval.h) . 41
6.2.1 Initializing intervals . 41
6.2.2 Assigning intervals . 41
6.2.3 Comparing intervals . 42
6.2.4 Other operations on intervals . 42
6.2.5 Array of intervals . 43

6.3 Coefficients (ap_coeff.h) . 43
6.3.1 Initializing coefficients . 43
6.3.2 Assigning coefficients . 43
6.3.3 Comparing coefficients . 44
6.3.4 Other operations on coefficients . 44

7 Level 1 of the interface . 45
7.1 Variables and related operations (ap_var.h) . 46
7.2 Environments (ap_environment.h) . 46
7.3 Linear expressions of level 1 (ap_linexpr1.h) . 49

7.3.1 Allocating linear expressions of level 1 . 50
7.3.2 Tests on linear expressions of level 1 . 50
7.3.3 Access to linear expressions of level 1 . 51

7.3.3.1 Getting references . 51
7.3.3.2 Getting values . 51
7.3.3.3 Assigning values with a list of arguments . 51
7.3.3.4 Assigning values . 52

7.3.4 Change of dimensions and permutations of linear expressions of level 1 53
7.4 Linear constraints of level 1 (ap_lincons1.h) . 53

7.4.1 Allocating linear constraints of level 1 . 54
7.4.2 Tests on linear constraints of level 1 . 54
7.4.3 Access to linear constraints of level 1 . 54
7.4.4 Change of dimensions and permutations of linear constraints of level 1 55
7.4.5 Arrays of linear constraints of level 1 . 55

7.5 generators of level 1 (ap_generator1.h) . 56
7.5.1 Allocating generators of level 1 . 56
7.5.2 Access to generators of level 1 . 57
7.5.3 Change of dimensions and permutations of generators of level 1 57
7.5.4 Arrays of generators of level 1 . 57

7.6 Tree expressions of level 1 (ap_texpr1.h) . 58
7.6.1 Datatypes for tree expressions of level 1 . 59
7.6.2 Constructors/Destructors for tree expressions of level 1 . 59
7.6.3 Tests on tree expressions of level 1 . 60
7.6.4 Operations on tree expressions of level 1 . 61

7.7 Tree constraints of level 1 (ap_tcons1.h) . 61
7.7.1 Datatypes for tree constraints of level 1 . 61
7.7.2 Constructors/Destructors for tree constraints of level 1 . 62
7.7.3 Operations on tree constraints of level 1 . 62
7.7.4 Arrays of tree constraints of level 1 . 63

7.8 Abstract values and operations of level 1 (ap_abstract1.h) . 63
7.8.1 Allocating abstract values of level 1 . 64
7.8.2 Control of internal representation of abstract values of level 1 64
7.8.3 Printing abstract values of level 1 . 65
7.8.4 Serialization of abstract values of level 1 . 65
7.8.5 Constructors for abstract values of level 1 . 65

iii

7.8.6 Accessors for abstract values of level 1 . 66
7.8.7 Tests on abstract values of level 1 . 66
7.8.8 Extraction of properties of abstract values of level 1 . 66
7.8.9 Meet and Join of abstract values of level 1 . 67
7.8.10 Assignements and Substitutions of abstract values of level 1 68
7.8.11 Existential quantification of abstract values of level 1 . 68
7.8.12 Change of environments of abstract values of level 1 . 68
7.8.13 Expansion and Folding of dimensions of abstract values of level 1 68
7.8.14 Widening of abstract values of level 1 . 69
7.8.15 Topological closure of abstract values of level 1 . 69
7.8.16 Additional functions on abstract values of level 1 . 69

8 Level 0 of the interface . 71
8.1 Dimensions and related operations (ap_dimension.h) . 71

8.1.1 Manipulating changes of dimensions . 73
8.1.2 Manipulating permutations of dimensions . 73

8.2 Linear expressions of level 0 (ap_linexpr0.h) . 74
8.2.1 Allocating linear expressions of level 0 . 74
8.2.2 Tests on linear expressions of level 0 . 74
8.2.3 Access to linear expressions of level 0 . 75

8.2.3.1 Getting references . 75
8.2.3.2 Getting values . 75
8.2.3.3 Assigning values with a list of arguments . 75
8.2.3.4 Assigning values . 76

8.2.4 Change of dimensions and permutations of linear expressions of level 0 77
8.2.5 Other functions on linear expressions of level 0 . 78

8.3 Linear constraints of level 0 (ap_lincons0.h) . 78
8.3.1 Allocating linear constraints of level 0 . 79
8.3.2 Tests on linear constraints of level 0 . 79
8.3.3 Arrays of linear constraints of level 0 . 79
8.3.4 Change of dimensions and permutations of linear constraints of level 0 80

8.4 Generators of level 0 (ap_generator0.h) . 80
8.4.1 Allocating generators of level 0 . 81
8.4.2 Arrays of generators of level 0 . 81
8.4.3 Change of dimensions and permutations of generators of level 0 81

8.5 Tree expressions of level 0 (ap_texpr0.h) . 82
8.6 Tree constraints of level 0 (ap_tcons0.h) . 82
8.7 Abstract values and operations of level 0 (ap_abstract0.h) . 82

8.7.1 Allocating abstract values of level 0 . 82
8.7.2 Control of internal representation of level 0 . 83
8.7.3 Printing abstract values of level 0 . 83
8.7.4 Serialization of abstract values of level 0 . 83
8.7.5 Constructors for abstract values of level 0 . 83
8.7.6 Accessors for abstract values of level 0 . 84
8.7.7 Tests on abstract values of level 0 . 84
8.7.8 Extraction of properties of abstract values of level 0 . 84
8.7.9 Meet and Join of abstract values of level 0 . 85
8.7.10 Assignements and Substitutions of abstract values of level 0 86
8.7.11 Existential quantification of abstract values of level 0 . 86
8.7.12 Change and permutation of dimensions of abstract values of level 0 86
8.7.13 Expansion and Folding of dimensions of abstract values of level 0 87
8.7.14 Widening of abstract values of level 0 . 87
8.7.15 Topological closure of abstract values of level 0 . 87
8.7.16 Additional functions on abstract values of level 0 . 87

iv APRON 0.9.12

9 Functions for implementors . 89

10 Examples . 91

1

1 APRON Copying Conditions (LGPL)

The APRON library is copyright c© by the APRON project, and its partners.

This license applies to all files distributed in the APRON library, including all source code,

libraries, binaries, and documentation.

Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.

51 Franklin St – Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

as the successor of the GNU Library Public License, version 2, hence the

version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it.

By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share

and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated

software—typically libraries—of the Free Software Foundation and other authors who decide

to use it. You can use it too, but we suggest you first think carefully about whether this license

or the ordinary General Public License is the better strategy to use in any particular case, based

on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies of free

software (and charge for this service if you wish); that you receive source code or can get it if

you want it; that you can change the software and use pieces of it in new free programs; and

that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you

these rights or to ask you to surrender these rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give

the recipients all the rights that we gave you. You must make sure that they, too, receive or can

get the source code. If you link other code with the library, you must provide complete object

files to the recipients, so that they can relink them with the library after making changes to the

library and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer

you this license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the

free library. Also, if the library is modified by someone else and passed on, the recipients should

know that what they have is not the original version, so that the original author’s reputation

will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We

wish to make sure that a company cannot effectively restrict the users of a free program by

obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license

2 APRON 0.9.12

obtained for a version of the library must be consistent with the full freedom of use specified in

this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public

License. This license, the GNU Lesser General Public License, applies to certain designated

libraries, and is quite different from the ordinary General Public License. We use this license

for certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the

combination of the two is legally speaking a combined work, a derivative of the original library.

The ordinary General Public License therefore permits such linking only if the entire combination

fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking

other code with the library.

We call this license the Lesser General Public License because it does Less to protect the

user’s freedom than the ordinary General Public License. It also provides other free software

developers Less of an advantage over competing non-free programs. These disadvantages are

the reason we use the ordinary General Public License for many libraries. However, the Lesser

license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible

use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs

must be allowed to use the library. A more frequent case is that a free library does the same job

as widely used non-free libraries. In this case, there is little to gain by limiting the free library

to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater

number of people to use a large body of free software. For example, permission to use the GNU

C Library in non-free programs enables many more people to use the whole GNU operating

system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does

ensure that the user of a program that is linked with the Library has the freedom and the

wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay

close attention to the difference between a “work based on the library” and a “work that uses

the library”. The former contains code derived from the library, whereas the latter must be

combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a

notice placed by the copyright holder or other authorized party saying it may be distributed

under the terms of this Lesser General Public License (also called “this License”). Each

licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be

conveniently linked with application programs (which use some of those functions and data)

to form executables.

The “Library”, below, refers to any such software library or work which has been dis-

tributed under these terms. A “work based on the Library” means either the Library or

any derivative work under copyright law: that is to say, a work containing the Library or

a portion of it, either verbatim or with modifications and/or translated straightforwardly

Chapter 1: APRON Copying Conditions (LGPL) 3

into another language. (Hereinafter, translation is included without limitation in the term

“modification”.)

“Source code” for a work means the preferred form of the work for making modifications to

it. For a library, complete source code means all the source code for all modules it contains,

plus any associated interface definition files, plus the scripts used to control compilation

and installation of the library.

Activities other than copying, distribution and modification are not covered by this License;

they are outside its scope. The act of running a program using the Library is not restricted,

and output from such a program is covered only if its contents constitute a work based on

the Library (independent of the use of the Library in a tool for writing it). Whether that is

true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish on

each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty; and distribute a copy

of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option

offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a

work based on the Library, and copy and distribute such modifications or work under the

terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you changed

the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third parties

under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data to be supplied

by an application program that uses the facility, other than as an argument passed

when the facility is invoked, then you must make a good faith effort to ensure that,

in the event an application does not supply such function or table, the facility still

operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is

entirely well-defined independent of the application. Therefore, Subsection 2d requires

that any application-supplied function or table used by this function must be optional:

if the application does not supply it, the square root function must still compute square

roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that

work are not derived from the Library, and can be reasonably considered independent and

separate works in themselves, then this License, and its terms, do not apply to those sections

when you distribute them as separate works. But when you distribute the same sections as

part of a whole which is a work based on the Library, the distribution of the whole must

be on the terms of this License, whose permissions for other licensees extend to the entire

whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work

written entirely by you; rather, the intent is to exercise the right to control the distribution

of derivative or collective works based on the Library.

4 APRON 0.9.12

In addition, mere aggregation of another work not based on the Library with the Library

(or with a work based on the Library) on a volume of a storage or distribution medium

does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this

License to a given copy of the Library. To do this, you must alter all the notices that refer

to this License, so that they refer to the ordinary GNU General Public License, version 2,

instead of to this License. (If a newer version than version 2 of the ordinary GNU General

Public License has appeared, then you can specify that version instead if you wish.) Do not

make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary

GNU General Public License applies to all subsequent copies and derivative works made

from that copy.

This option is useful when you wish to copy part of the code of the Library into a program

that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2)

in object code or executable form under the terms of Sections 1 and 2 above provided that

you accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,

then offering equivalent access to copy the source code from the same place satisfies the

requirement to distribute the source code, even though third parties are not compelled to

copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to

work with the Library by being compiled or linked with it, is called a “work that uses the

Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore

falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable

that is a derivative of the Library (because it contains portions of the Library), rather than

a “work that uses the library”. The executable is therefore covered by this License. Section

6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the

Library, the object code for the work may be a derivative work of the Library even though

the source code is not. Whether this is true is especially significant if the work can be linked

without the Library, or if the work is itself a library. The threshold for this to be true is

not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,

and small macros and small inline functions (ten lines or less in length), then the use of the

object file is unrestricted, regardless of whether it is legally a derivative work. (Executables

containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code

for the work under the terms of Section 6. Any executables containing that work also fall

under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that uses

the Library” with the Library to produce a work containing portions of the Library, and

distribute that work under terms of your choice, provided that the terms permit modifi-

Chapter 1: APRON Copying Conditions (LGPL) 5

cation of the work for the customer’s own use and reverse engineering for debugging such

modifications.

You must give prominent notice with each copy of the work that the Library is used in it

and that the Library and its use are covered by this License. You must supply a copy of

this License. If the work during execution displays copyright notices, you must include the

copyright notice for the Library among them, as well as a reference directing the user to

the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source code

for the Library including whatever changes were used in the work (which must be

distributed under Sections 1 and 2 above); and, if the work is an executable linked

with the Library, with the complete machine-readable “work that uses the Library”, as

object code and/or source code, so that the user can modify the Library and then relink

to produce a modified executable containing the modified Library. (It is understood

that the user who changes the contents of definitions files in the Library will not

necessarily be able to recompile the application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable

mechanism is one that (1) uses at run time a copy of the library already present on

the user’s computer system, rather than copying library functions into the executable,

and (2) will operate properly with a modified version of the library, if the user installs

one, as long as the modified version is interface-compatible with the version that the

work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the

same user the materials specified in Subsection 6a, above, for a charge no more than

the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated place,

offer equivalent access to copy the above specified materials from the same place.

e. Verify that the user has already received a copy of these materials or that you have

already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any

data and utility programs needed for reproducing the executable from it. However, as a

special exception, the materials to be distributed need not include anything that is normally

distributed (in either source or binary form) with the major components (compiler, kernel,

and so on) of the operating system on which the executable runs, unless that component

itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary

libraries that do not normally accompany the operating system. Such a contradiction means

you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single

library together with other library facilities not covered by this License, and distribute such

a combined library, provided that the separate distribution of the work based on the Library

and of the other library facilities is otherwise permitted, and provided that you do these

two things:

a. Accompany the combined library with a copy of the same work based on the Library,

uncombined with any other library facilities. This must be distributed under the terms

of the Sections above.

6 APRON 0.9.12

b. Give prominent notice with the combined library of the fact that part of it is a work

based on the Library, and explaining where to find the accompanying uncombined form

of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense, link with,

or distribute the Library is void, and will automatically terminate your rights under this

License. However, parties who have received copies, or rights, from you under this License

will not have their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing

else grants you permission to modify or distribute the Library or its derivative works. These

actions are prohibited by law if you do not accept this License. Therefore, by modifying or

distributing the Library (or any work based on the Library), you indicate your acceptance of

this License to do so, and all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient

automatically receives a license from the original licensor to copy, distribute, link with or

modify the Library subject to these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein. You are not responsible

for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License, they do

not excuse you from the conditions of this License. If you cannot distribute so as to satisfy

simultaneously your obligations under this License and any other pertinent obligations, then

as a consequence you may not distribute the Library at all. For example, if a patent license

would not permit royalty-free redistribution of the Library by all those who receive copies

directly or indirectly through you, then the only way you could satisfy both it and this

License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circum-

stance, the balance of the section is intended to apply, and the section as a whole is intended

to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose of

protecting the integrity of the free software distribution system which is implemented by

public license practices. Many people have made generous contributions to the wide range

of software distributed through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to distribute software

through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of

the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Library

under this License may add an explicit geographical distribution limitation excluding those

countries, so that distribution is permitted only in or among countries not thus excluded. In

such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser Gen-

Chapter 1: APRON Copying Conditions (LGPL) 7

eral Public License from time to time. Such new versions will be similar in spirit to the

present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version

number of this License which applies to it and “any later version”, you have the option of

following the terms and conditions either of that version or of any later version published

by the Free Software Foundation. If the Library does not specify a license version number,

you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution

conditions are incompatible with these, write to the author to ask for permission. For

software which is copyrighted by the Free Software Foundation, write to the Free Software

Foundation; we sometimes make exceptions for this. Our decision will be guided by the two

goals of preserving the free status of all derivatives of our free software and of promoting

the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE

LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITH-

OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE

QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE

LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY

MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE

LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-

DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-

ABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH

ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

8 APRON 0.9.12

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we

recommend making it free software that everyone can redistribute and change. You can do so by

permitting redistribution under these terms (or, alternatively, under the terms of the ordinary

General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them

to the start of each source file to most effectively convey the exclusion of warranty; and each file

should have at least the “copyright” line and a pointer to where the full notice is found.
one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,

USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to

sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

9

2 Introduction to APRON

The APRON library provides a common interface for abstract domains of invariants for numer-

ical variables, in the sense of the Abstract Interpretation theory. It includes a few domains, and

provides interfaces to libraries implemented by other teams.

Several libraries already exists, wich implement various abstract domains of invariants. One

can cite intervals, linear equalities, octagons, octahedra, convex polyhedra, polynomial equali-

ties, polynomial inequalities. Although they offer a kernel of common functionalities, their API

may differ greatly, and some functionalities may lack in some libraries. The aim of the APRON

library is to offer a common interface to these libraries. Such a standardized interface offers

several advantages: it allows

• to easily substitute a library/abstract domain by another in the same analysis tool; this is

useful to compare the efficiency of 2 implementations of the same abstract domain, or the

precision of 2 different abstract domains.

• to factorize services which are mostly independant of the abstract domain (variables man-

agement, linearization of non-linear expressions, etc...);

• to make easier the combination of abstract domains: the abstract domains to be combined

are used through the same interface, as the resulting combination;

As a user, why should I use APRON ?

1. it makes very easy to switch the abstract domain (for numerical variables) in use in an

analyzer;

2. it already offers the most used abstract domains, ranging from intervals, octagons, convex

polyhedra to linear congruences;

3. its interface should satisfy most needs, as it already satisfies the members of the APRON

project working in different contexts (verification of high-level specifications/programs with

exact arithmetics for INRIA \& Verimag, static analysis of runtime errors with floating-

point arithmetics for ENS Paris, automatic parallelization of programs for ENSMP).

4. the interface, at the level 1, already provides slightly higher-level functionalities than most

existing and publicy available abstract domains libraries (with the manipulation of environ-

ments); this statement should be reinforced in the near future with the planned addition of

a generic non-linear expressions layer and a floating-point arithmetic layer.

As a domain implementor, why should I interface my abstract
domain/library to APRON ?

1. to incite existing users of the APRON interface to try your library;

2. to make your users, including yourself, benefit from previous points 1 and 4;

3. to not waste your time implementing environments, variables renaming, OCaml interfaces,

and so on; the effort to connect your library to the interface should at minimum be coun-

terbalanced by such gains;

11

3 APRON Rationale and Functionalities

3.1 General choices

Interface levels

There are two main goals for the APRON interface: efficiency of the implementations, and ease

of use for the user. In addition, code duplication between libraries should be avoided. As a

consequence, two levels were identified:

Level 0 Choices are guided by the efficiency and the precision of the operations;

Level 1 Choices are guided by ease of use, and code factorization.

The level 0 is directly connected to the underlying (existing) library. It includes all the oper-

ations that are specific to an abstract domain and whose code cannot be shared. The interface

should be minimal, unless there is a strong algorithmical advantage to include a combination of

more basic operations.

The higher levels offers additional functionalities that are shared by all the library connected

to the level 0. For instance:

• managing correspondance between numerical dimensions and names (characters strings or

more generally references);

• abstraction of non linear expressions in interval linear expressions;

• automatic call to redimensioning and permutation operations for computing P (x, y)uQ(y, z)

Combination of abstract domain is possible at the level 0. One can implement for instance the

cartesian or reduced product of two different abstract domains, the decomposition of abstract

values into a product of values of smaller dimensionality, ...

Programming language

The reference version of the interface is the C version of the interface:

• C can be easily interfaced with most programming languages;

• Most of the existing libraries implementing abstract domains for numerical variables are

programmed in C or C++.

An OCaml version is already available. The interface between OCaml and C is even generic

and any libraries can benefit from it by providing the glue for just one function (see XX).

Compatibility with threads

In order to ensure compatibility with multithreading programming, a context is explicitly passed

to functions in order to ensure the following points:

• the transmission of data specific to each library (non-standard options, workspace, ...);

• the transmission of standard options (selection of algorithms and their precision inside a

library);

• the management of exceptions (implemented as error codes in the C interface) (not_

implemented, invalid_argument, overflow, timeout, out_of_space).

Interruptions

Interruptions mechanism is have possible for different cases:

12 APRON 0.9.12

timeout if the execution time for an operation exceeds some bound;

out_of_space

if the space consumption for an operation exceeds some bound;

overflow if the magnitude or the space usage of manipulated numbers exceeds some bound;

not_implemented

if the operation is actually not implemented by the underlying library;

invalid_argument

if the arguments do not follow the requirements of an operation.

For instance, in a convex polyhedra library, the out_of_space exception allows

to abort an operation is the result appears to have too many constraints and/or

generators. If this happens, one can redo the operation with another (less precise)

algorithm. The overflow may be useful when effective overflows are encountered

with machine integers or when multiprecision rational numbers have too large nu-

merators and denominators. The not_implemented exception allows for a library to

be linked to the interface even if it does not provide some operation of the interface.

When an interruption occurs, the function should still return a correct result, in the abstract

interpretation sense: it should be a correct approximation, usable for next operations in the

program. The top value is always a correct approximation.

Memory management

Memory is managed differently depending on the programming language. Currently:

• No automatic garbage collection in the C interface

• Use of the OCaml runtime garbage collector in the OCaml interface

Programming style

Both functional and imperative (i.e., side-effect) signatures are supported for operations. This

allows to optimize the memory allocation and to use whichever version is more convenient for

an user and the used programming language.

Number representation

Inside a specific library, any number representation may be used (floating-point numbers, ma-

chine integers, multiprecision integers/rationals, ...). Existing libraries often offers the possibility

to select different representations.

However, in the interface, this representation should be normalized and independent of un-

derlying libraries, without being restrictive either. As a consequence, the interface offers the

choiced between

• GMP multiprecision rationals (which implements exact arithmetic);

• and machine floating-point numbers (double).

3.2 Functionalities of the interface at level 0

Representation of an abstract value

At the level 0 of the interface, an abstract value is a structure

struct ap_abstract0_t {

ap_manager_t *manager; /* Explicit context */

Chapter 3: APRON Rationale and Functionalities 13

void *value; /* Abstract value representation

(only known by the underlying library) */

}

The context is allocated by the underlying library, and contains an array of function pointers

pointing to the function of the underlying library. Hence, it indicates the effective type of an

abstract value.

The validity of the arguments of the functions called through the interface is checked before

the call to effective functions. In case of problem, an invalid_argument exception is raised.

Semantics of an abstract value

The semantics of an abstract value is a subset

X ⊆ N p ×Rq

Abstract values are typed according to their dimensionality (p,q).

Dimensions

Dimensions are numbered from 0 to p+q-1 and are typed either as integer or real, depending on

their rank w.r.t. the dimensionality of the abstract value.

Note: Taking into account or not the fact that some dimensions are integers is left

to underlying libraries. Treating them as real is still a correct approximation. The

behaviour of the libraries in this regard may also depend on some options.

Other datatypes

In addition to abstract values, the interface also manipulates the following main datatypes:

scalar (number)

Either GMP multiprecision rationals or C double.

interval composed of 2 scalar numbers. With rationals, plus (resp minus) infinity is repre-

sented by 1/0 (resp -1/0). With double, the IEEE754 is assumed and the corre-

sponding standard representation is used.

coefficient which is either a scalar or an interval.

(interval) linear expression

The term linear is used even if the proper term should rather be affine. A linear

expression is a linear expression in the common sense, using only scalar numbers.

A quasi-linear expression is a linear expression where the constant coefficient is an

interval. An interval linear expression is a linear expression where any coefficient

may be an interval. In order to have a unique datatype for these variations, we

introduced the notion of coefficient described above.

“linear” constraints

“Linear” constraints includes proper linear constraints, linear constraints in which

the expression can be possibly an interval linear expression, linear equalities modulo

a number, and linear disequalities.

generators A generator system for a subset of X ⊆ Rn is a finite set of vectors, among which

one distinguishes points p0, . . . , pm and rays r0, . . . , rn, that generates X:

X = {λ0 ~p0 + . . . λm ~pm + µ0~r0 + . . .+ µn ~rn |
∑
i

λi = 1 ∧ ∀j : µj ≥ 0}

14 APRON 0.9.12

The APRON datatype for generators distinguishes points (sum of coefficients equal

to one), rays (positive coefficients), lines (or bidirectional rays, with unconstrainted

coefficients), integer rays (integer positive coefficients) and integer lines (integer

coefficients).

Control of internal representation

We identified several notions:

• Canonical form

• Minimal form (in term of space)

• Approximation notion left to the underlying library (taking into account integers or not,

...).

Printing

There are two printing operations:

• Printing of an abstract value;

• Printing the difference between two abstract values.

The printing format is library dependent. However, the conversion of abstract values to con-

straints (see below) allows a form of standardized printing for abstract values.

Serializaton/Deserialization

Serialization and deserialization of abstract values to a memory buffer is offered. It is entirely

managed by the underlying library. In particular, it is up to it to check that a value read from

the memory buffer has the right format and has not been written by a different library.

Serialization is done to a memory buffer instead of to a file descriptor because this mechanism

is more general and is needed for interfacing with languages like OCaml.

Constructors

Four basic constructors are offered:

• bottom (empty) and top (universe) values (with a specified dimensionality);

• abstraction of a bounding box;

• abstraction of conjunction of linear constraints (in the broad sense).

Tests

Predicates are offered for testing

• emptiness and universality of an abstract value:

• inclusion and equality of two abstract values;

• inclusion of a dimension into an interval given an abstract value;

abs(~x) |= xi ∈ I ?

• satisfaction of a linear constraint by the abstract value.

abs(~x) |= cons(~x) or abs(~x)⇒ cons(~x) ?

Property extraction

Some properties may be inferred given an abstract values:

Chapter 3: APRON Rationale and Functionalities 15

• Interval of variation of a dimension in an abstract value;⋂
{I | abs(~x) |= xi ∈ I}

• Interval of variation of a linear expression in an abstract value;⋂
{I | abs(~x) |= expr(~x) ∈ I}

• Conversion to a bounding box ⋂
{B | abs(~x) ⊆ B}

• Conversion to a set of linear constraints (in the broad sense).

Notice that the second operation implements linear programming if it is exact. The third

operation is not minimal, as it can be implemented using the first one, but it was convenient to

include it. But the fourth operation is minimal and cannot be implemented using the second

one, as the number of linear expression is infinite.

Lattice operations

• Least upper bound and greatest lower bound of two abstract values, and of arrays of abstract

values;

• Intersection with one or several linear constraints;

α

(
γ(abs(~x)) ∩

⋂
i

cons i(~x)

)

• Addition of rays (for instance for implement generalized time elapse operator in linear

hybrid systems).

α

({
~x+

∑
i

λi~ri | ~x ∈ γ(abs), λi ≥ 0

})

Assignement and Substitutions

• of a dimension by a (interval) linear expression

Assignement:

α

((
∃xi :

(
γ(abs(~x)) ∩ x′

i = expr(~x)
))

[xi ← x′
i]

)
Substitution:

α

(
∃x′

i :
(
γ(abs(~x))[x′

i ← xi] ∩ x′
i = expr(~x)

))
• in parallel of several dimensions by several (interval) linear expressions

Assignement:

α

((
∃~x :

(
γ(abs(~x)) ∩

⋂
i

x′
i = expr i(~x)

))
[~x← ~x′]

)

Substitution:

α

(
∃~x′ :

(
γ(abs(~x′)) ∩

⋂
i

x′
i = expr(~x)

))
Parallel assignement and substitution ar enot minimal operations, but for some abstract domains

implementing them directly results in more efficient or more precise operations.

16 APRON 0.9.12

Operations on dimensions

• Projection/Elimination of one or several dimensions with constant dimensionality;

Elimination:

∃xi : abs(~x)

Projection:

(∃xi : abs(~x)) ∩ xi = 0

• Addition/Removal/Permutation of dimensions with corresponding change of dimensionality

(with the exception of permutation). These operations allows to resize abstract values, and

reorganize dimensions.

• Expansion and folding of dimensions. This is useful for the abstraction of arrays, where a

dimension may represent several variables.

Expansion of i into i, j1, j2 assuming xj1 , xj2 are new dimensions:

abs(~x) u abs(~x)[xj1 ← xi] u abs(~x)[xj2 ← xi]...

Folding of j0 and j1 into j0:

(∃xj1 : abs(~x)) t (∃xj0 : abs(~x)[xj0 ← xj1]

Other operations

Widening, either simple or with threshold, is offered. A generic widening with threshold function

is offered in the interface.

Topological closure (i.e., relaxation of strict inequalities) is offered.

3.3 Functionalities of the interface at level 1

We focus on the changes brought by the level 1 w.r.t. the level 0.

Variables

Dimensions are replaced by variables.

In the C interface, variables are defined by a generic type (char*, structured type, ...),

equipped with the operations compare, copy, free, to_string. In the OCaml, for technical

reasons, the type is just the string type.

Environments manages the correspondance between the numerical dimensions of level 0 and

the variables of level 1.

Semantics and Representation of an abstract value

The semantics of an abstract value is a subset

X ⊆ V → (N ∪R)

where X is a set of variables. Abstract values are typed according to their environment.

It is represented by a structure

struct ap_abstract1_t {

ap_abstract0_t *abstract0;

ap_environment_t *env;

};

Chapter 3: APRON Rationale and Functionalities 17

Other datatypes of level 0 are extend in the same way. For instance,

struct ap_linexpr1_t {

ap_linexpr0_t *linexpr0;

ap_environment_t *env;

};

Operations on environments

• creation, merging, destruction

• addition/removal/renaming of variables

Dynamic typing w.r.t. environments

For binary operations on abstract values, the environments should be the same.

For operations involving an abstract value and an other datatype (expression, constraint, ...),

one checks that the environment of the expression is a subenvironment of the environment of

the abstract value, and one resize if necessary.

Operations on variables in abstract values

Operations on dimensions are lifted to operations on variables:

• Projection/Elimination of one or several variables with constant environment;

• Addition/Removal/Renaming of variables with corresponding change of environment;

• Change of environment (possibly combining removal and addition of variables);

• Expansion and folding of variables.

19

4 APRON Guidelines

4.1 Installing APRON

You should look at ../README, ../Makefile.config.model and ../Makefile files.

4.2 C Programming Guidelines

4.2.1 C Headers and Libraries

Declarations needed to use an underlying library via APRON are collected in the C include files

ap_global0.h and ap_global1.h. They respectively refer to the level 0 and the level 1 of the

interface. One can also refer to single APRON modules with their corresponding include files

ap_dimension.h, ap_lincons0.h, ... Header files <stdio.h>, stdlib.h and <stdarg.h> will

be required.

Then, you should also include the header files of the underlying libraries you want to use it

via APRON (for instance, box.h, pk.h, ap_ppl.h).

All programs using APRON must link against the libapron, libmpfr and libgmp libraries,

and the underlying libraries you want to use it via APRON:

1. If some file test.c uses the POLKA library via APRON, the compilation command should

look like ‘gcc -I$ITV/include -I$MPFR/include -I$GMP/include -I$APRON/include

-L$MPFR/lib -L$GMP/lib -L$APRON/lib -o test test.c -lpolkaMPQ -lapron -lmpfr

-lgmp’, assuming that the POLKA library is used in its ’MPQ’ version (internal number

representation is GMP rationals) and resides in $APRON/include and $APRON/lib

directories.

The libpolkaMPQ.a library is of course needed, libapron.a contains all the code common

to all APRON library (manipulation of expressions, environments, ...), as well as ITV func-

tions (quasi)linearisation facilities of APRON,...), last the libraries libmpfr.a and libgmp.a

are required both by NewPolka and APRON .

2. If some file test.c uses the PPL library via APRON, the compilation command should

look like ‘g++ -I$ITV/include -I$MPFR/include -I$GMP/include -I$APRON/include

-I$PPL/include -L$ITV/lib -L$MPFR/lib -L$GMP/lib -L$APRON/lib -L$PPL/lib -o

test test.c -la_ppl -lppl -lgmpxx -lapron -lmpfr -lgmp’, assuming that PPL resides

in $PPL and PPL APRON interface in $APRON/include and $APRON/lib directories.

Notice that the PPL library (libppl.a) is a C++ library, you need to use ‘g++’ instead of

‘gcc’ for linking. You also need the C++ layer on top of GMP (libgmpxx.a). The libap_

ppl.a library contains the layer on top of PPL which implements the APRON interface.

You should look at the specific documentation of the libraries for more details.

4.2.2 Naming conventions and Allocation/Deallocation schemes

The general rule is that all type and function names defined by the library are prefixed with

ap_, in order to prevent name conflicts with other libraries. Moreover, functions operating on

objects of type ap_typ_t are usually prefixed with ap_typ_op.

Given an object of datatype ap_typ_t*, two kinds of allocation/deallocation pairs of func-

tions may be defined:

1. variable declaration: ap_typ_t obj;

• Initialization: void typ_init(ap_typ_t* arg, ...) or ap_typ_t ap_typ_make(...)

20 APRON 0.9.12

• Finalization: void ap_typ_clear(ap_typ_t* arg)

this pair of functions follows the semantics used in the GMP library. The first function

initializes the object of type ap_typ_t pointed to by arg, and fills it with a valid content.

The second function deallocates the memory possibly pointed to by fields of the object

*arg, but do not attempt to deallocate the memory pointed by arg.

2. variable declaration: ap_typ_t* obj;

• Allocation ap_typ_t* ap_typ_alloc(...)

• Deallocation void ap_typ_free(ap_typ_t* arg)

the first function allocates an object of type typ_t and then calls a ap_typ_init-like

function on the result; the second functions first call a ap_typ_clear-like function and

then deallocate the memory pointed by arg.

4.2.3 Allocating managers and setting options

From the user point of view, the benefit of using the APRON interface is to restrict the place

where the user is aware of the real library in use to the code initializing the manager, as illustrated

by the following example:

#include "ap_global1.h"

#include "pk.h"

/* Allocating a Polka manager, for polyhedra with strict constraints */

manager_t* man = pk_manager_alloc(true);

/* Setting options offered by the common interface,

but with meaning possibly specific to the library */

manager_set_abort_if_exception(man,EXC_OVERFLOW,true);

{

funopt_t funopt;

funopt_init(&funopt);

funopt.algorithm = 1; /* default value is 0 */

manager_set_funopt(man,fun_widening,&funopt); /* Setting options for widening */

}

{

funopt_t funopt = manager_get_funopt(man,fun_widening);

funopt.timeout = 30;

manager_set_funopt(man,fun_widening,&funopt);

}

/* Obtaining the internal part of the manager and setting specific options */

pk_internal_t* pk = manager_get_internal(man);

pk_set_max_coeff_size(pk,size);

The standard operations can then be used and will have the semantics defined in the inter-

face. Notice however that some generic functions are not formally generic: abstract_fprint,

abstract_fdump, abstract_approximate. At any point, options may be modified in the same

way as during the initialization.

4.2.4 Sequel of the small example

An environment can be created as follows:
/* Create an environment with 6 real variables */

ap_var_t name_of_dim[6] = {

Chapter 4: APRON Guidelines 21

"x","y","z","u","w","v"

};

ap_environment_t* env = ap_environment_alloc(NULL,0,name_of_dim,6);

Then, we build an array of constraints. At level 1, an array of constraints is an abstract

datatype, which requires careful manipulation w.r.t. memory management.
/* Create an array of constraints of size 2 */

ap_lincons1_array_t array = ap_lincons1_array_make(env,2);

/* 1.a Creation of an inequality constraint */

ap_linexpr1_t expr = ap_linexpr1_make(env,AP_LINEXPR_SPARSE,1);

ap_lincons1_t cons = ap_lincons1_make(AP_CONS_SUP,&expr,NULL);

/* Now expr is memory-managed by cons */

/* 1.b Fill the constraint */

ap_lincons1_set_list(&cons,

AP_COEFF_S_INT,"x",

AP_CST_S_FRAC,1,2,

AP_END);

/* 1.c Put in the array */

ap_lincons1_array_set(&array,0,&cons);

/* Now cons is memory-managed by array */

/* 2.a Creation of an inequality constraint */

expr = ap_linexpr1_make(env,AP_LINEXPR_SPARSE,2);

cons = ap_lincons1_make(AP_CONS_SUPEQ,&expr,NULL);

/* The old cons is not lost, because it is stored in the array.

It would be an error to clear it (same for expr). */

/* 2.b Fill the constraint */

ap_lincons1_set_list(&cons,

AP_COEFF_S_INT,1,"x",

AP_COEFF_S_INT,1,"y",

AP_COEFF_S_INT,1,"z",

AP_END);

/* 2.c Put in the array */

ap_lincons1_array_set(&array,1,&cons);

Last we can build an abstract value.
/* Creation of an abstract value defined by the array of constraints */

ap_abstract1_t abs = ap_abstract1_of_lincons_array(man,env,&array);

fprintf(stdout,"Abstract value:\n");

ap_abstract1_fprint(stdout,man,&abs);

We now deallocate everything:
/* deallocation */

ap_lincons1_array_clear(&array);

ap_abstract1_clear(&abs);

ap_environment_free(env);

ap_manager_free(man);

4.2.5 Typing issue in C

The use of several libraries at the same time via the common interface and the managers asso-

ciated to each library raises the problem of typing. Look at the following code:

ap_manager_t* manpk = pk_manager_alloc(true); /* manager for Polka */

ap_manager_t* manoct = oct_manager_alloc(); /* manager for octagon */

ap_abstract0_t* abs1 = ap_abstract_top(manpk,3,3);

ap_abstract0_t* abs2 = ap_abstract_top(manoct,3,3);

bool b = ap_abstract0_is_eq(manoct,abs1,abs2);

/* Problem: the effective function called (octagon_is_eq) expects

abs1 to be an octagon, and not a polyhedron ! */

22 APRON 0.9.12

ap_abstract0_t* abs3 = ap_abstract_top(manoct,3,3);

abstract0_meet_with(manpk,abs2,abs3);

/* Problem: the effective function called (pk_meet_with) expects

abs2 and abs3 to be polyhedra, but they are octagons */

There is actually no static typing, as abstract0_t* and manager_t are abstract types shared

by the different libraries. Types are thus dynamically checked by the interface. Notice that the

use of C++ and inheritance would not solve directly the problem, if functions of the interface are

methods of the manager; one would have:

ap_manager_t* manpk = pk_manager_alloc(true);

/* manager for Polka, effective type pk_manager_t* */

ap_manager_t* manoct = oct_manager_alloc();

/* manager for octagon, effective type oct_manager_t* */

ap_abstract0_t* abs1 = manpk->abstract_top(3,3);

/* effective type: poly_t */

ap_abstract0_t* abs2 = manoct->abstract_top(3,3);

/* effective type: oct_t */

bool b = manoct->abstract0_is_eq(abs1,abs2);

/* No static typing possible:

manpk->abstract0_is_eq and manoct->abstract0_is_eq should have the same

signature (otherwise one cannot interchange manpk and manoct in the code),

which means that abs1 and abs2 are supposed to be of type abstract0_t* */

*/

Currently, only the OCaml polymorphic type system allows to solve elegantly this problem.

4.3 OCaml Programming Guidelines

All modules belonging to the APRON interface itself (Scalar, Interval, ..., Manager, Linexpr0,

... Abstract1) are included in a big encapsulating module named Apron. In addition, there

are modules like Box (intervals), Oct (octagons), Polka (linear equalities and convex polyhedra)

and Ppl (convex polyhedra and linear congruences) not included in Apron.

Generic abstract values have the type ’a Abstract1.t, generic managers the type ’a

Manager.t. A typical operation like the emptiness test has the type val is_bottom : ’a

Manager.t -> ’a Abstract1.t -> bool.

Octagons of Octagon have the type Oct.t Apron.Abstract1.t. The corresponding man-

agers have thus the type Oct.t Manager.t.

See OCaml interface (../mlapronidl/index.html) for the documentation.

4.4 How to make an existing library conformant to APRON ?

We briefly describe here how to connect an existing library to the common interface.

First, the library has to expose an interface which conforms to the level 0 of the interface

(module abstract0). All the functions described in this module should be defined. If a function

is not really implemented, at least it shoulld contain the code raising the exception EXC_NOT_

IMPLEMENTED. The implementor may use any functions of the files ap_coeff.h, ap_linexpr0.h,

ap_lincons0.h, ap_generator0.h and ap_manager.h to help the job of converting datatypes

of the interface to internal datatypes used inside the library.

../mlapronidl/index.html

23

Second and last, the library should expose an initialization function that allocates and ini-

tializes properly an object of type manager_t. For this purpose, the module manager offers

the utility functions manager_alloc. As an example, we give the definition of the function

allocating a manager as implemented in the NewPolka.

1. Header of the function:

manager_t* pk_manager_alloc(

bool strict /* specific parameter: do we allow strict constaints ? */

)

2. Allocation and initialisation of global data specific to NewPolka:

{

pk_internal_t* pk = pk_internal_alloc(strict); /* allocation */

pk_set_approximate_max_coeff_size(pk, 1);

/* initialization of specific functions

(not offered in the common interface) */

}

3. Allocation of the manager itself:

manager_t* man = ap_manager_alloc("polka","2.0",

pk, (void (*)(void*))pk_internal_free);

We provide resp. name, version, internal specific manager, and the function to free it.

The function manager_alloc sets the options of the common interface to their default value

(see documentation).

4. Initialization of the “virtual” table: we need to connect the generic functions of the interface

(eg, abstract_meet, \ldots) to the actual functions of the library.

funptr = man->funptr;

funptr[fun_minimize] = &poly_minimize;

funptr[fun_canonicalize] = &poly_canonicalize;

funptr[fun_hash] = &poly_hash;

funptr[fun_approximate] = &poly_approximate;

funptr[fun_fprint] = &poly_fprint;

funptr[fun_fprintdiff] = &poly_fprintdiff;

funptr[fun_fdump] = &poly_fdump;

...

5. Last, we return the allocated manager:

return man;

}

That’s all for the implementor side.

25

5 Managers and Abstract Domains

APRON makes use of a global manager for:

• selecting an effective underlying library/abstract domain;

• controlling various options;

• managing exceptions and flags;

• and also managing internal workspace needed for some library.

In a multithreaded program, both managers and abstract values should not be shared between

threads (make copies to transmit information).

Managers are allocated by the underlying libraries/abstract domains, but are freed via an

APRON function.

5.1 Managers (ap_manager.h)

5.1.1 Datatypes

[datatype]tbool_t

typedef enum tbool_t {

tbool_false=0,

tbool_true=1,

tbool_top=2, /* don’t know */

} tbool_t;

static inline tbool_t tbool_of_bool(bool a);

static inline tbool_t tbool_or(tbool_t a, tbool_t b);

static inline tbool_t tbool_and(tbool_t a, tbool_t b);

Booleans with a third unknown value.

[datatype]ap_membuf_t

typedef struct ap_membuf_t {

void* ptr;

size_t size;

} ap_membuf_t;

For serialization.

[datatype]ap_manager_t

APRON managers (opaque type).

[datatype]ap_funid_t

For identifying functions in excpetions, and when reading/setting options attached to them.

typedef enum ap_funid_t {

AP_FUNID_UNKNOWN,

AP_FUNID_COPY,

AP_FUNID_FREE,

AP_FUNID_ASIZE, /* For avoiding name conflict with AP_FUNID_SIZE */

AP_FUNID_MINIMIZE,

AP_FUNID_CANONICALIZE,

AP_FUNID_HASH,

AP_FUNID_APPROXIMATE,

26 APRON 0.9.12

AP_FUNID_FPRINT,

AP_FUNID_FPRINTDIFF,

AP_FUNID_FDUMP,

AP_FUNID_SERIALIZE_RAW,

AP_FUNID_DESERIALIZE_RAW,

AP_FUNID_BOTTOM,

AP_FUNID_TOP,

AP_FUNID_OF_BOX,

AP_FUNID_DIMENSION,

AP_FUNID_IS_BOTTOM,

AP_FUNID_IS_TOP,

AP_FUNID_IS_LEQ,

AP_FUNID_IS_EQ,

AP_FUNID_IS_DIMENSION_UNCONSTRAINED,

AP_FUNID_SAT_INTERVAL,

AP_FUNID_SAT_LINCONS,

AP_FUNID_SAT_TCONS,

AP_FUNID_BOUND_DIMENSION,

AP_FUNID_BOUND_LINEXPR,

AP_FUNID_BOUND_TEXPR,

AP_FUNID_TO_BOX,

AP_FUNID_TO_LINCONS_ARRAY,

AP_FUNID_TO_TCONS_ARRAY,

AP_FUNID_TO_GENERATOR_ARRAY,

AP_FUNID_MEET,

AP_FUNID_MEET_ARRAY,

AP_FUNID_MEET_LINCONS_ARRAY,

AP_FUNID_MEET_TCONS_ARRAY,

AP_FUNID_JOIN,

AP_FUNID_JOIN_ARRAY,

AP_FUNID_ADD_RAY_ARRAY,

AP_FUNID_ASSIGN_LINEXPR_ARRAY,

AP_FUNID_SUBSTITUTE_LINEXPR_ARRAY,

AP_FUNID_ASSIGN_TEXPR_ARRAY,

AP_FUNID_SUBSTITUTE_TEXPR_ARRAY,

AP_FUNID_ADD_DIMENSIONS,

AP_FUNID_REMOVE_DIMENSIONS,

AP_FUNID_PERMUTE_DIMENSIONS,

AP_FUNID_FORGET_ARRAY,

AP_FUNID_EXPAND,

AP_FUNID_FOLD,

AP_FUNID_WIDENING,

AP_FUNID_CLOSURE,

AP_FUNID_SIZE,

AP_FUNID_CHANGE_ENVIRONMENT,

AP_FUNID_RENAME_ARRAY,

AP_FUNID_SIZE2

} ap_funid_t;

Chapter 5: Managers and Abstract Domains 27

extern const char* ap_name_of_funid[AP_FUNID_SIZE2];

/* give the name of a function identifier */

[datatype]ap_exc_t

[datatype]ap_exc_log_t

Exceptions and exception logs (chained in a list, the first one being the last one).

typedef enum ap_exc_t {

AP_EXC_NONE, /* no exception detected */

AP_EXC_TIMEOUT, /* timeout detected */

AP_EXC_OUT_OF_SPACE, /* out of space detected */

AP_EXC_OVERFLOW, /* magnitude overflow detected */

AP_EXC_INVALID_ARGUMENT, /* invalid arguments */

AP_EXC_NOT_IMPLEMENTED, /* not implemented */

AP_EXC_SIZE

} ap_exc_t;

extern const char* ap_name_of_exception[AP_EXC_SIZE];

typedef struct ap_exclog_t {

ap_exc_t exn;

ap_funid_t funid;

char* msg; /* dynamically allocated */

struct ap_exclog_t* tail;

} ap_exclog_t;

[datatype]ap_funopt_t

Options attached to functions.

typedef struct ap_funopt_t {

int algorithm;

/* Algorithm selection:

- 0 is default algorithm;

- MAX_INT is most accurate available;

- MIN_INT is most efficient available;

- otherwise, no accuracy or speed meaning

*/

size_t timeout; /* unit !? */

/* Above the given computation time, the function may abort with the

exception flag flag_time_out on.

*/

size_t max_object_size; /* in abstract object size unit. */

/* If during the computation, the size of some object reach this limit, the

function may abort with the exception flag flag_out_of_space on.

*/

bool flag_exact_wanted;

/* return information about exactitude if possible

*/

bool flag_best_wanted;

/* return information about best correct approximation if possible

*/

} ap_funopt_t;

28 APRON 0.9.12

5.1.2 Functions related to managers

[Function]void ap_manager_free (ap manager t* man)

Free a manager (dereference a counter, and possibly deallocate).

[Function]const char* ap manager get library (ap manager t* man)

[Function]const char* ap manager get version (ap manager t* man)

Reading the name and the version of the attached underlying library.

[Function]bool ap_manager_get_flag_exact (ap manager t* man)

[Function]bool ap_manager_get_flag_best (ap manager t* man)

Return true if the last called APRON function returned an exact (resp. a best approxima-

tion) result.

Options

See [ap funopt t], page 27.

[Function]ap_funopt_t ap_manager_get_funopt (ap manager t* man, ap funid t
funid)

Getting the option attached to the specified function in the manager. funid should be less

than AP_FUNID_SIZE (no option associated to other identifiers). Otherwise, abort with a

message.

[Function]void ap_manager_set_funopt (ap manager t* man, ap funid t funid,
ap funopt t* fopt)

Setting the option attached to the specified function in the manager. fopt is copied (and not

only referenced). funid should be less than AP_FUNID_SIZE (no option associated to other

identifiers). Otherwise, do nothing.

[Function]void ap_funopt_init (ap funopt t* fopt)

Initialize fopt with default values.

Exceptions

[Function]bool ap_manager_get_abort_if_exception (ap manager t* man,
ap exc t exn)

Return true if the program abort when the exception exn is raised by some function. Oth-

erwise, in such a case, a valid (but dummy) value should be returned by the function that

raises the exception.

[Function]void ap_manager_set_abort_if_exception (ap manager t* man,
ap exc t exn, bool flag)

Position the above-described option.

[Function]ap_exc_t ap_manager_get_exception (ap manager t* man)

Get the last exception raised.

[Function]ap_exclog_t ap_manager_get_exclog (ap manager t* man)

Get the full log of exceptions. The first one in the list is the last raised one.

5.2 Box (box.h): intervals abstract domain

The Box interval library is aimed to be used through the APRON interface.

Chapter 5: Managers and Abstract Domains 29

5.2.1 Use of Box

To use Box in C, add

#include "box.h"

in your source file(s) and add ‘-I$(BOX_PREFIX)/include’ in the command line in your

Makefile.

You should also link your object files with the Box library to produce an executable, by

adding something like ‘-L$(APRON_PREFIX)/lib -lboxmpq -litvmpq’ in the command line in

your Makefile (followed by the standard ‘-lapron -litvmpq -litvdbl -L$(MPFR_PREFIX)/lib

-lmpfr -L$(GMP_PREFIX)/lib -lgmp’).

There are actually several variants of the library:

libboxllr.a

The underlying representation for numbers is rationals based on long long int

integers. This may cause overflows. These are currently not detected. It requires

also the libitvllr.a library.

libboxdbl.a

The underlying representations for numbers is double. Overflows are not possible

(we use infinite floating numbers), but currently the soundness is not ensured for all

operations. It requires also the libitvdbl.a library.

libboxmpq.a

The underlying representations for rationams is mpq_t, the multi-precision rationals

from the GNU GMP library. Overflows are not possible any more, but huge numbers

may appear. It requires also the libitvmpq.a library.

Also, all library are available in debug mode (‘libboxmpq_debug.a’, ...).

5.2.2 Allocating Box managers

[Function]ap_manager_t* box_manager_alloc ()

Allocate a APRON manager linked to the Box library.

5.3 Oct: octagon abstract domain

oct_doc.html

5.4 NewPolka (pk.h): convex polyhedra and linear equalities
abstract domains

The NewPolka convex polyhedra and linear equalities library is aimed to be used through the

APRON interface. However some specific points should be precised. First, NewPolka can use

several underlying representations for numbers, which lead to several library variants. Second,

some specific functions are needed, typically to allocate managers, and to specify special options.

5.4.1 Use of NewPolka

To use NewPolka in C, add

#include "pk.h"

#include "pkeq.h"

/* if you want linear equalities */

in your source file(s) and add ‘-I$(APRON_PREFIX)/include’ in the command line in your

Makefile.

oct_doc.html

30 APRON 0.9.12

You should also link your object files with the NewPolka library to produce an exe-

cutable, by adding something like ‘-L$(APRON_PREFIX)/lib -lpolkag’ in the command line in

your Makefile (followed by the standard ‘-lapron -litvmpq -litvdbl -L$(MPFR_PREFIX)/lib

-lmpfr -L$(GMP_PREFIX)/lib -lgmp’).

There are actually several variants of the library:

libpolkai.a

The underlying representation for integers is long int. This may easily cause over-

flows, especially with many dimensions or variables. Overflows are not detected but

usually result in infinite looping. The underlying representation for integers is long

long int. This may (less) easily cause overflows.

libpolkag.a

The underlying representation for integers is mpz_t, the multi-precision integers from

the GNU GMP library. Overflows are not possible any more, but huge numbers may

appear.

All scalars of type double are converted to scalars of type mpq_t inside NewPolka, as New-

Polka works internally with exact rational arithmetics. So when possible it is better for the user

(in term of efficiency) to convert already double scalars to mpq_t scalars.

There is a way to prevent overflow and/or huge numbers, which is to position the options

max_coeff_size and approximate_max_coeff_size, see Section 5.4.2 [Allocating NewPolka

managers and setting specific options], page 30.

Also, all library are available in debug mode (‘libpolkai_debug.a’,

5.4.2 Allocating NewPolka managers and setting specific options

[datatype]pk_internal_t

NewPolka type for internal managers (specific to NewPolka, and specific to each execution

thread in multithreaded programs).

Allocating managers

[Function]ap_manager_t* pk_manager_alloc (bool strict)
Allocate an APRON manager for convex polyhedra, linked to the NewPolka library.

The strict option, when true, enables strict constraints in polyhedra (like x>0). Managers

in strict mode or in loose mode (strict constraints disabled) are not compatible, and so are

corresponding abstract values.

[Function]ap_manager_t* pkeq_manager_alloc ()

Allocate an APRON manager for linear equalities, linked to the NewPolka library.

Most options which makes sense for convex polyhedra are meaningless for linear equalities.

It is better to set the standard options associated to functions so that abstract values are in

canonical form (see Section 5.4.3 [NewPolka standard options], page 31). This is the default

anyway.

Setting options

Options specific to NewPolka are set directly on the internal manager. It can be extracted

with the pk_manager_get_internal function.

Chapter 5: Managers and Abstract Domains 31

[Function]pk_internal_t* pk_manager_get_internal (ap manager t* man)

Return the internal submanager. If man has not been created by pk_manager_alloc or

pkeq_manager_alloc, return NULL.

[Function]void pk_set_max_coeff_size (pk internal t* pk, size t size)
If size is not 0, try to raise an AP_EXC_OVERFLOW exception as soon as the size of an integer

exceed size.

Very incomplete implementation. Currently, used only in libpolkag variant, where the size

is the number of limbs as returned by the function mpz_size of the GMP library. This allows

to detect huge numbers.

[Function]void pk_set_approximate_max_coeff_size (pk internal t* pk, size t
size)

This is the parameter to the poly_approximate/ap_abstractX_approximate functions.

[Function]size_t pk_get_max_coeff_size (pk internal t* pk)

[Function]size_t pk_get_approximate_max_coeff_size (pk internal t* pk)

Reading the previous parameters.

5.4.3 NewPolka standard options

This section describes the NewPolka options which are selected using the standard mechanism

offered by APRON (see [Manager options], page 28).

Modes

Most functions of NewPolka has two modes. In the lazy mode the canonicalization (computation

of the dual representation and minimisation of both representations) of the argument polyhedra

is performed only when the needed representation is not available. The resulting polyhedra

is in general not in the canonical representation. In the strict mode, argument polyhedra are

canonicalized (if they are not yet in canonical form) and the result is (in general) in canonical

form.

The strict mode exploits the incremental propery of the Chernikova algorithm and maintain in

parallel the constraints and the generators representations. The lazy mode delays computations

as much as possible.

Be cautious, in the following table, canonical means minimized constraints and generators

representation, but nothing more. In particular, the function canonicalize performs further

normalization by normalizing strict constraints (when they exist) and ordering constraints and

generators.

Function algo Comments

copy Identical representation

free

size Return the number of coefficients.

Their size (when using multi-precision integers) is not taken into

account.

32 APRON 0.9.12

minimize Require canonicalization.

Keep only the smallest representation among the constraints and the

generators representation.

canonicalize

approximate Require constraints.

algo here refers to the explicit parameter of the function. A neg-

ative number indicates a possibly smaller result, a positive one a

possibly greater one. The effects of the function may be different for

2 identical polyhedra defined by different systems of (non minimal)

constraints.

Equalities are never modified.

-1 Normalize integer minimal constraints. This results in a smaller

polyhedra.

1 Remove constraints with coefficients of size (in bits) greater than the

approximate max coeff size parameter.

2 Idem, but preserve interval constraints.

3 Idem, but preserve octagonal constraints (+/- xi +/- xj >= cst).

10 Simplify constraints such that the coefficients size (in bits) are less

or equal than the approximate max coeff size parameter. The con-

stant coefficients are recomputed by linear programming and are not

involved in the reduction process.

– Do nothing

fprint Require canonicalization.

fprintdiff not implemented

fdump Print raw representations of any of the constraints, generators and

saturation matrices that are available.

serialize raw, dese-

rialize raw

not implemented

bottom,top Return canonical form.

of box Return constraints.

of lincons array Return constraints.

>=0 Take into account interval-linear constraints, after having minimized

the quasi-linear constraints

<0 Ignore interval-linear constraints

dimension

Chapter 5: Managers and Abstract Domains 33

is bottom <0 If generators not available, return tbool_top

>=0 If generators not available, canonicalize and return tbool_false or

tbool_true.

is top <0 If not in canonical form, return tbool_top

>=0 Require canonical form.

is leq <=0 Require generators of first argument and constraints of second

argument.

>0 Require canonical form for both arguments.

is eq Require canonical form for both arguments.

is dimension unconstrainedRequire canonical form

sat interval,

sat lincons,

bound dimension,

bound linexpr

<=0 Require generators.

>0 Require canonical form.

to box <0 Require generators.

>=0 Require canonical form.

to lincons array,

to generator array

Require canonical form.

meet, meet array,

meet lincons array

<0 Require constraints.

Return non-minimized constraints.

>=0 Require canonical form.

Return canonical form.

join, join array,

add ray array

<0 Require generators.

Return non-minimized generators.

>=0 Require canonical form.

Return canonical form.

assign linexpr 1. If the optional argument is NULL,

<=0 If the expr. is deterministic and invertible, require any representa-

tion and return the transformed one. If in canonical form, return

canonical form.

If the expr. is deterministic and non-invertible, require generators

and return generators

If the expr. is non-deterministic, require constraints and return

generators.

>0 Require canonical form, return canonical form.

If the expr. is deterministic,(and even more, invertible), the opera-

tion is more efficient.

34 APRON 0.9.12

2. If the optional argument is not NULL, first the assignement is per-

formed, and then the meet function is applied with its corresponding

option.

substitute linexpr 1. If the optional argument is NULL,

<=0 If the expr. is deterministic and invertible, require any representa-

tion and return the transformed one. If in canonical form, return

canonical form.

If the expr. is deterministic and non-invertible, require constraints

and return constraints

If the expr. is non-deterministic, require constraints and return

generators.

>0 Require canonical form, return canonical form.

If the expr. is deterministic (and even more, invertible), the opera-

tion is more efficient.

2. If the optional argument is not NULL, first the substitution is per-

formed, and then the meet function is applied with its corresponding

option.

assign linexpr array 1. If the optional argument is NULL,

<=0 If the expr. are deterministic, require generators and return genera-

tors

Otherwise, require canonical form and return generators.

>0 Require canonical form, return canonical form.

2. If the optional argument is not NULL, first the assignement is per-

formed, and then the meet function is applied with its corresponding

option.

substitute linexpr array 1. If the optional argument is NULL,

<=0 If the expr. are deterministic, require constraints and return con-

straints

Otherwise, require canonical form and return generators.

>0 Require canonical form, return canonical form.

2. If the optional argument is not NULL, first the substitution is per-

formed, and then the meet function is applied with its corresponding

option.

forget array <=0 Require generators and return generators.

>0 Require canonical form and return canonical form.

add dimensions,

per-

mute dimensions

<=0 Require any representation and return the updated one.

If in canonical form, return canonical form.

>0 Require canonical form, return canonical form.

remove dimensions <=0 Require generators, return generators.

Chapter 5: Managers and Abstract Domains 35

>0 Require canonical form, return canonical form.

expand <0 Require constraints, return constraints.

>=0 Require canonical form, return canonical form.

fold <0 Require generators, return generators.

>=0 Require canonical form, return canonical form.

widening Require canonical form.

closure 1. If pk manager alloc() has been given a false Boolean (no strict

constraints), same as copy.

2. Otherwise,

<0 Require constraints, return constraints.

>=0 Require canonical form, return constraints.

5.5 PPL (ap_ppl.h): convex polyhedra and linear congruences
abstract domains

The APRON PPL library is an APRON wrapper around the Parma Polyhedra Library (PPL)

(http://www.cs.unipr.it/ppl/). The wrapper offers the convex polyhedra and linear congru-

ences abstract domains.

5.5.1 Use of APRON PPL

To use APRON PPL in C, you need of course to install PPL, after having patched it following

the recommendations of the README file. You need also to add

#include "apron_ppl.h"

in your source file(s) and add ‘-I$(APRON_PREFIX)/include’ in the command line in your

Makefile.

You should also link your object files with the APRON PPL library to produce an executable,

using ‘g++’ (instead of ‘gcc’, because libppl.a is a C++ library), and adding something like

‘-L$(APRON_PREFIX)/lib -lapron_ppl -L$(PPL_PREFIX)/lib -lppl -L$(GMP_PREFIX)/lib

-lgmpxx’ in the command line in your Makefile (followed by the standard ‘-lapron -litvmpq

-litvdbl -L$(MPFR_PREFIX)/lib -lmpfr -L$(GMP_PREFIX)/lib -lgmp’). The libgmpxx.a

library is the C++ wrapper on top of the GMP library. Ensure that your GMP installation

contains it, as it is not always installed by default.

All scalars of type double are converted to scalars of type mpq_t inside APRON PPL, as

APRON PPL works internally with exact rational arithmetics. So when possible it is better for

the user (in term of efficiency) to convert already double scalars to mpq_t scalars.

The wrapper library is available in debug mode (‘libapron_ppl_debug.a’).

5.5.2 Allocating APRON PPL managers

[Function]ap_manager_t* ap_ppl_poly_manager_alloc (bool strict)
Allocate a APRON manager for convex polyhedra, linked to the PPL library.

The strict option, when true, enables strict constraints in polyhedra (like x>0). Managers

in strict mode or in loose mode (strict constraints disabled) are not compatible, and so are

corresponding abstract values.

http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

36 APRON 0.9.12

[Function]ap_manager_t* ap_ppl_grid_manager_alloc ()

Allocate an APRON manager for linear equalities, linked to the PPL library.

5.5.3 APRON PPL standard options

Currently, the only options available are related to the widening operators.

Function algo Comments

widening <=0 CH78 standard widening (Cousot & Halbwachs, POPL’1978).

>0 BHRZ03 widening (Bagnara, Hill, Ricci & Zafanella, SAS’2003)

widening threshold <=0 standard widening with threshold

=1 standard widening with threshold, intersected by the bounding box

of the convex hull pof the two arguments

<=0 standard widening with threshold

=1 standard widening with threshold, intersected by the bounding box

of the convex hull of the second argument. This is actually an ex-

trapolation rather than a widening (termination is not guaranteed)

=2 BHRZ03 widening with threshold

=3 BHRZ03 widening with threshold, intersected by the bounding box

of the convex hull of the second argument. This is actually an ex-

trapolation rather than a widening (termination is not guaranteed)

5.6 pkgrid (ap_pkgrid.h): reduced product of NewPolka convex
polyhedra and PPL linear congruences abstract domains

The pkgrid library is aimed to be used through the APRON interface. It implements the re-

duced product of NewPolka convex polyhedra and the PPL linear congruences abstract domains

and implementations. It exploits for this the features offered by the module ap_reducedproduct

contained in the apron core library.

5.6.1 Use of pkgrid

To use pkgrid in C, add

#include "ap_pkgrid.h"

in your source file(s) and add ‘-I$(APRON_PREFIX)/include’ in the command line in your

Makefile.

You should also link your object files with the pkgrid library to produce an executable,

by adding something like ‘-L$(APRON_PREFIX)/lib -lap_pkgrid’ in the command line in your

Makefile, followed by the flags and libraries needed for the NewPolka library (see Section 5.4.1

[Use of NewPolka], page 29) and the PPL library (see Section 5.5.1 [Use of APRON PPL],

page 35). Be cautious: because of the use of the PPL library, you ‘g++’ (C++ compiler) instead

of ‘gcc’ (C compiler) for the linking.

Also, the library is available in debug mode (‘libap_pkgrid_debug.a’,

‘libap_pkgrid_debug.so’).

Chapter 5: Managers and Abstract Domains 37

5.6.2 Allocating pkgrid managers

[Function]ap_manager_t* ap_pkgrid_manager_alloc (ap manager t* manpk,
ap manager t* manpplgrid)

Allocate a APRON manager linked to the pkgrid library, using the (loose or strict) polka

manager manpk and the PPL grid manager manpplgrid. If one of the argulment manager is

not of the right type, returns NULL.

Available standard options are the one offered by the generic reduced product module ap_

reducedproduct contained in the apron core library (see Chapter 9 [Functions for implemen-

tors], page 89).

39

6 Scalars & Intervals & coefficients

Scalars are scalar numbers, implemented either as an (inexact) floating point type or an (exact)

rational type. Intervals are intervals built on scalars. Coefficients are either scalars or intervals.

We sum up the involved types below (numbers denotes sizes in bytes on a typical 32 bits

computer.

ap_scalar_t 12 ap_interval_t 8

|-----------------| |--------------|

| ap_scalar_discr | 4 | ap_scalar_t* | 4

|-----------------| |--------------|

| double | mpq_t* | 8 | ap_scalar_t* | 4

|-----------------| |--------------|

ap_coeff_t 8

|-------------------------------|

| ap_coeff_discr | 4

|-------------------------------|

| ap_scalar_t* | ap_interval_t* | 4

|-------------------------------|

These types are manipulated using pointers, with creator X_t* X_alloc() and destructors

void X_free(X_t*).

6.1 Scalars (ap_scalar.h)

[datatype]ap_scalar_discr_t

typedef enum ap_scalar_discr_t {

AP_SCALAR_DOUBLE, /* floating-point with double */

AP_SCALAR_MPQ /* rational with multi-precision GMP */

} ap_scalar_discr_t;

Discriminant indicating the underlying type of a scalar number.

[datatype]ap_scalar_t

typedef struct ap_scalar_t {

ap_scalar_discr_t discr;

union {

double dbl;

mpq_ptr mpq; /* +infty coded by 1/0, -infty coded by -1/0 */

} val;

} ap_scalar_t;

A scalar number is either a double, or a multi-precision rational, as implemented by GMP.

6.1.1 Initializing scalars

[Function]ap_scalar_t* ap_scalar_alloc ()

Allocate a scalar, of default type DOUBLE (the most economical)

[Function]void ap_scalar_free (ap scalar t* op)

Deallocate a scalar.

40 APRON 0.9.12

[Function]void ap_scalar_reinit (ap scalar t* op, ap scalar discr t discr)
Change the type of an already allocated scalar (mainly for internal use)

[Function]void ap_scalar_init (ap scalar t* op, ap scalar discr t discr)
[Function]void ap_scalar_clear (ap scalar t* op)

Initialize and clear a scalar \‘a la GMP (internal use).

6.1.2 Assigning scalars

[Function]void ap_scalar_set (ap scalar t* rop, ap scalar t* op)

Set the value of rop from op.

[Function]void ap_scalar_set_mpq (ap scalar t* rop, mpq t mpq)
[Function]void ap_scalar_set_int (ap scalar t* rop, long int i)
[Function]void ap_scalar_set_frac (ap scalar t* rop, long int i, unsigned long

int j)
Change the type of rop to MPQ and set its value to resp. mpq, i, and i/j.

[Function]void ap_scalar_set_double (ap scalar t* rop, double k)
Change the type of rop to DOUBLE and set its value to k.

[Function]void ap_scalar_set_infty (ap scalar t* rop, int sgn)
Set the value of rop to sgn*infinity. Keep the type of the rop.

[Function]ap_scalar_t* ap_scalar_alloc_set (ap scalar t* op)

[Function]ap_scalar_t* ap_scalar_alloc_set_mpq (mpq t mpq)
[Function]ap_scalar_t* ap_scalar_alloc_set_double (double k)

Combined allocation and assignement.

6.1.3 Converting scalars

[Function]void ap_mpq_set_scalar (mpq t mpq, ap scalar t* op, int round)
Set mpq with the value of op, possibly converting from DOUBLE type.

round currently unused.

[Function]double ap_scalar_get_double (ap scalar t* op, int round)
Return the value of op in DOUBLE type, possibly converting from MPQ type.

Conversion may be not exact. round currently unused.

6.1.4 Comparing scalars

[Function]int ap_scalar_infty (ap scalar t* op)

Return -1 if op is set to +infty, -1 if set to -infty, and 0 otherwise.

[Function]int ap_scalar_sgn (ap scalar t* op)

Return the sign of op (+1, 0 or -1).

[Function]int ap_scalar_cmp (ap scalar t* op1, ap scalar t* op2)

[Function]int ap_scalar_cmp_int (ap scalar t* op1, int op2)
Exact comparison between two scalars (resp. a scalar and an integer).

Return -1 if op1 is less than op2, 0 if they are equal, and +1 if op1 is greater than op2.

Chapter 6: Scalars & Intervals & coefficients 41

[Function]bool ap_scalar_equal (ap scalar t* op1, ap scalar t* op2);
[Function]bool ap_scalar_equal_int (ap scalar t* op1, int op2);

Equality test between two scalars (resp. a scalar and an integer).

Return true if equality.

6.1.5 Other operations on scalars

[Function]void ap_scalar_neg (ap scalar t* rop, ap scalar t* op)

Negation.

[Function]void ap_scalar_inv (ap scalar t* rop, ap scalar t* op)

Inversion. Not exact for DOUBLE type.

[Function]void ap_scalar_swap (ap scalar t* op1, ap scalar t* op2)

Exchange the values of op1 and op2.

[Function]int ap_scalar_hash (ap scalar t* op)

Return an hash code (for instance for OCaml interface).

[Function]void ap_scalar_fprint (FILE* stream, ap scalar t* op)

Print op on the stream stream.

6.2 Intervals (ap_interval.h)

[datatype]ap_interval_t

typedef struct ap_interval_t {

ap_scalar_t* inf;

ap_scalar_t* sup;

} ap_interval_t;

Intervals on scalars.

6.2.1 Initializing intervals

[Function]void ap_interval_alloc ()

Allocate an interval (with scalars of default type DOUBLE, the most economical).

[Function]void ap_interval_free (ap interval t* op)

Deallocate an interval.

[Function]void ap_interval_reinit (ap interval t* op, ap scalar discr t discr)
Change the type of the bounds of the interval (mainly for internal use).

6.2.2 Assigning intervals

[Function]void ap_interval_set (ap interval t* rop, ap interval t* op)

Set the value of rop from op.

[Function]void ap_interval_set_scalar (ap interval t* rop, ap scalar t* inf,
ap scalar t* sup)

Set the value of rop from the interval [inf,sup].

[Function]void ap_interval_set_mpq (ap interval t* rop, mpq t inf, mpq t sup)
[Function]void ap_interval_set_int (ap interval t* rop, int inf, int sup)

42 APRON 0.9.12

[Function]void ap_interval_set_frac (ap interval t* rop, int numinf, int
deninf, int numsup, int densup)

Set the value of rop from the interval [inf,sup] or [numinf /deninf,numsup/densup]. The

scalars are of type MPQ.

[Function]void ap_interval_set_double (ap interval t* rop, double inf, double
sup)

Set the value of rop from the interval [inf,sup]. The scalars are of type DOUBLE.

[Function]void ap_interval_set_top (ap interval t* op)

[Function]void ap_interval_set_bottom (ap interval t* op)

Set the value of rop resp. to the top interval [-oo,+oo] or to the empty interval [+1,-1].

[Function]ap_interval_t* ap_interval_alloc_set (ap interval t* op)

Combined allocation and assignement.

6.2.3 Comparing intervals

[Function]bool ap_interval_is_top (ap interval t* op)

[Function]bool ap_interval_is_bottom (ap interval t* op)

Return true if the interval is resp. the universe interval ([-oo,+oo]) or an empty interval.

[Function]bool ap_interval_is_leq (ap interval t* op1, ap interval t* op2)

Inclusion test.

Return true if the interval op1 is included in op2.

[Function]bool ap_interval_equal (ap interval t* op1, ap interval t* op2)

Equality test.

Return true if the interval op1 is included in op2.

[Function]int ap_interval_cmp (ap interval t* op1, ap interval t* op2)

Non-total comparison.

0 equality

-1 op1 included in op2

+1 op2 included in op1

-2 op1.inf less than op2.inf

+2 op1.inf greater than op2.inf

6.2.4 Other operations on intervals

[Function]void ap_interval_neg (ap interval t* rop, ap interval t* op)

Negation.

[Function]void ap_interval_swap (ap interval t* op1, ap interval t* op2)

Exchange the values of op1 and op2.

[Function]int ap_interval_hash (ap interval t* op)

Return an hash code (for instance for OCaml interface).

[Function]void ap_interval_fprint (FILE* stream, ap interval t* op)

Print op on the stream stream.

Chapter 6: Scalars & Intervals & coefficients 43

6.2.5 Array of intervals

[Function]ap_interval_t** ap_interval_array_alloc (size t size)
Allocate an array of intervals, initialized with [0,0] values.

[Function]void ap_interval_array_free (ap interval t** array, size t size)
Clearing and deallocating an array of intervals.

6.3 Coefficients (ap_coeff.h)

[datatype]ap_coeff_discr_t

typedef enum ap_coeff_discr_t { AP_COEFF_SCALAR, AP_COEFF_INTERVAL }

ap_coeff_discr_t;

Discriminant indicating the underlying type of a coefficient.

[datatype]ap_coeff_t

typedef struct ap_coeff_t {

ap_coeff_discr_t discr;

union {

ap_scalar_t* scalar;

ap_interval_t* interval;

} val;

} ap_coeff_t;

A coefficient is either a scalar or an interval.

6.3.1 Initializing coefficients

[Function]void ap_coeff_alloc (ap coeff discr t discr)
Allocate a coefficient, using discr to specify the type of coefficient (scalar or interval).

[Function]void ap_coeff_free (ap coeff t* op)

Deallocate a coefficient.

[Function]void ap_coeff_reinit (ap coeff t* op, ap coeff discr t discr1,
ap scalar discr t discr2)

Changing the type of the coefficient and also the type of the underlting scalar(s).

[Function]void ap_coeff_reduce (ap coeff t* op)

If the coefficient is an interval [a;a], convert it to a scalar. */

[Function]void ap_coeff_init (ap coeff t* rop, ap coeff discr t discr)
[Function]void ap_coeff_init_set (ap coeff t* rop, ap coeff t* op)

[Function]void ap_coeff_clear (ap coeff t* rop)

Initialize, initialize and assign, and clear a scalar \‘a la GMP (internal use).

6.3.2 Assigning coefficients

[Function]void ap_coeff_set (ap coeff t* rop, ap coeff t* op)

Set the value of rop from op.

[Function]void ap_coeff_set_scalar (ap coeff t* rop, ap scalar t* op)

[Function]void ap_coeff_set_scalar_mpq (ap coeff t* rop, mpq t mpq)
[Function]void ap_coeff_set_scalar_int (ap coeff t* rop, long int i)

44 APRON 0.9.12

[Function]void ap_coeff_set_scalar_frac (ap coeff t* rop, long int i, unsigned
long int j)

[Function]void ap_coeff_set_scalar_double (ap coeff t* rop, double k)
Set the type of rop to scalar, and sets its value as the functions ap_scalar_set_XXX.

[Function]void ap_coeff_set_interval (ap coeff t* rop, ap interval t* op)

[Function]void ap_coeff_set_interval_scalar (ap coeff t* rop, ap scalar t*
inf, ap scalar t* sup)

[Function]void ap_coeff_set_interval_mpq (ap coeff t* rop, mpq t inf, mpq t
sup)

[Function]void ap_coeff_set_interval_int (ap coeff t* rop, int inf, int sup)
[Function]void ap_coeff_set_interval_frac (ap coeff t* rop, int numinf, int

deninf, int numsup, int densup)
[Function]void ap_coeff_set_interval_double (ap coeff t* rop, double inf,

double sup)
Set the type of rop to interval, and sets its value as the functions ap_interval_set_XXX.

[Function]ap_coeff_t* ap_coeff_alloc_set (ap coeff t* op)

[Function]ap_coeff_t* ap_coeff_alloc_set_scalar (ap scalar t* scalar)

[Function]ap_coeff_t* ap_coeff_alloc_set_interval (ap interval t* interval)

Combined allocation and assignement.

6.3.3 Comparing coefficients

[Function]int ap_coeff_cmp (ap coeff t* op1, ap coeff t* op2)

Non-total comparison.

• If op1 and op2 are scalars, corresponds to ap_scalar_cmp.

• If op1 and op2 are intervals, corresponds to ap_interval_cmp.

• otherwise, -3 if the first is a scalar, 3 otherwise

[Function]bool ap_coeff_equal (ap coeff t* op1, ap coeff t* op2)

Equality test.

[Function]bool ap_coeff_zero (ap coeff t* op)

Return true iff coeff is a zero scalar or an interval with zero bounds.

6.3.4 Other operations on coefficients

[Function]void ap_coeff_neg (ap coeff t* rop, ap coeff t* op)

Negation.

[Function]void ap_coeff_swap (ap coeff t* op1, ap coeff t* op2)

Exchange the values of op1 and op2.

[Function]int ap_coeff_hash (ap coeff t* op)

Return an hash code (for instance for OCaml interface).

[Function]void ap_coeff_fprint (FILE* stream, ap coeff t* op)

Print op on the stream stream.

45

7 Level 1 of the interface

This interface of level 1 is defined in ap_global1.h.

The main functions brought by level 1 are

• to convert variables to dimensions, thanks to the addition of environments to objects;

• to redimension (abstract values), expressions, constraints and generators defined on different

environments.

The policy for redimensioning is the following one:

• For functions taking one abstract value and one expression (or constraint or generator,

or array of ...), the environment of the expression should be a sub-environment of the

environment of the abstract value. The environment of the result is the environment of the

argument abstract value.

• For functions taking several abstract values, their environments should be the same. Oth-

erwise, it is up to the user to move them to a common super-environment (see Section 7.2

[Environments], page 46, and Section 7.8.12 [Change of environments of abstract values of

level 1], page 68).

For information only (as these types are considered as abstract), we sum up the involved

types below.

ap_var_t ap_var_t ap_environment_t

|-------| |-------| |----------------------|

| void* | by default | char* | | ap_var_t* var_of_dim |

|-------| |-------| | size_t intdim |

| size_t realdim |

| size_t count |

|----------------------|

ap_linexpr1_t

|-------------------|

| ap_linexpr0_t* |

| ap_environment_t* |

|-------------------|

ap_lincons1_t ap_lincons1_array_t

|-------------------| |----------------------|

| ap_lincons0_t* | | ap_lincons0_array_t* |

| ap_environment_t* | | ap_environment_t* |

|-------------------| |----------------------|

ap_generator1_t ap_generator1_array_t

|-------------------| |------------------------|

| ap_generator0_t* | | ap_generator0_array_t* |

| ap_environment_t* | | ap_environment_t* |

|-------------------| |------------------------|

ap_texpr1_t

|-------------------|

| ap_texpr0_t* |

| ap_environment_t* |

46 APRON 0.9.12

|-------------------|

ap_tcons1_t ap_tcons1_array_t

|-------------------| |----------------------|

| ap_tcons0_t* | | ap_tcons0_array_t* |

| ap_environment_t* | | ap_environment_t* |

|-------------------| |----------------------|

ap_abstract1_t

|-------------------|

| ap_abstract0_t* |

| ap_environment_t* |

|-------------------|

7.1 Variables and related operations (ap_var.h)

A variable is not necessarily a name, it can be a more complex structured datatype, depending

on the application. That is the motivation to make it a parameter of the interface.

The abstract type ap_var_t is equipped with a total ordering function, a hashing function,

a copy function, and a free function. The parametrization of the interface is performed via a

global variable pointing to a ap_var_operations_t structure, containing the above-mentione

doperations on ap_var_t objects. This means that this type should be fixed once, and that in

a multitreaded application all threads should share the same ap_var_t type.

By default, ap_var_t is a C string (char*), and the global variable ap_var_operations is

properly initialized.

[datatype]ap_var_t

typedef void* ap_var_t;

Datatype for “variables”. It is assumed to be of size sizeof(void*).

[datatype]ap_var_operations_t

typedef struct ap_var_operations_t {

int (*compare)(ap_var_t v1, ap_var_t v2); /* Total ordering function */

int (*hash)(ap_var_t v); /* Hash function */

ap_var_t (*copy)(ap_var_t var); /* Duplication function */

void (*free)(ap_var_t var); /* Deallocation function */

char* (*to_string)(ap_var_t var); /* Conversion to a dynamically allocated string,

which should be deallocated with free after use */

} ap_var_operations_t;

Datatype for defining the operations on “variables”.

[Variable]ap_var_operations_t var_operations_default

Default manager, where ap_var_t is assumed to be char*.

[Variable]ap_var_operations_t* var_operations

Global pointer to the manager in use, by default points to ap_var_operations_default.

7.2 Environments (ap_environment.h)

Environments bind variables (of level 1) to dimensions (of level 0).

Chapter 7: Level 1 of the interface 47

[datatype]ap_environment_t

Internal datatype for environments.

For information, the definition is:

typedef struct ap_environment_t {

ap_var_t* var_of_dim;

/*

Array of size intdim+realdim, indexed by dimensions.

- It should not contain identical strings..

- Slice [0..intdim-1] is lexicographically sorted,

and denotes integer variables.

- Slice [intdim..intdim+realdim-1] is lexicographically sorted,

and denotes real variables.

- The memory allocated for the variables are attached to the structure

(they are freed when the structure is no longer in use)

*/

size_t intdim; /* Number of integer variables */

size_t realdim;/* Number of real variables */

size_t count; /* For reference counting */

} ap_environment_t;

[Function]void ap_environment_free (ap environment t* env)

[Function]ap_environment_t* ap_environment_copy (ap environment t* env)

Respectively free and duplicate an environment.

(copy is cheap, as environments are managed with reference counters).

[Function]void ap_environment_fdump (FILE* stream, ap environment t* env)

Print an environment under the form:

environment: dim = (..,..), count = ..

0: name0

1: name1

...

[Function]ap_environment_t* ap_environment_alloc_empty ()

Build an empty environment.

[Function]ap_environment_t* ap_environment_alloc (ap var t* var_of_intdim,
size t intdim, ap var t* var_of_realdim, size t realdim)

Build an environment from an array of integer and an array of real variables.

var of intdim is an array of variables of size intdim, var of realdim is an array of variables

of size realdim. Pointers to arrays may be NULL if their size is 0.

Variables are duplicated in the result, so it is the responsability of the user to free the variables

he provides.

If some variables are duplicated, return NULL.

48 APRON 0.9.12

[Function]ap_environment_t* ap_environment_add (ap environment t* env,
ap var t* var_of_intdim, size t intdim, ap var t* var_of_realdim, size t
realdim)

[Function]ap_environment_t* ap_environment_remove (ap environment t* env,
ap var t* tvar, size t size)

Resp. add or remove new variables to an existing environment, with a functional semantics.

Same conventions as for ap_environment_alloc function apply. If the result is non-sense

(or in case of attempt to remove an unknwon variable), return NULL.

[Function]ap_dim_t ap_environment_dim_of_var (ap environment t* env,
ap var t var)

Convert a variable in its corresponding dimension in the environment env. If var is unknown

in env, return AP_DIM_MAX.

[Function]ap_dim_t ap_environment_var_of_dim (ap environment t* env,
ap dim t dim)

Return the variable associated to the dimension dim in the environment env. There is no

bound check here.

The remaining functions are much less useful for normal user.

[Function]bool ap_environment_is_eq (ap environment t* env1,
ap environment t* env2)

[Function]bool ap_environment_is_leq (ap environment t* env1,
ap environment t* env2)

Resp. test the equality and the inclusion of two environments.

[Function]int ap_environment_compare (ap environment t* env1,
ap environment t* env2)

Return:

-2 if the environments are not compatible (a variable has a different type in the 2

environments);

-1 if env1 is a subset of (included in) env2;

0 if they are equal;

+1 if env1 is a superset of env2;

+2 otherwise: the least common environment exists and is a strict superset of both

environments.

[Function]int ap_environment_hash (ap environment t* env)

Return an hash code for an environment.

[Function]ap_dimchange_t* ap_environment_dimchange (ap environment t*
env1, ap environment t* env)

Compute the transformation for converting from an environment env1 to a superenvironment

env. Return NULL if env is not a superenvironment.

[Function]ap_dimchange2_t* ap_environment_dimchange2 (ap environment t*
env1, ap environment t* env2)

Compute the transformation for switching from an environment env1 to an env2, by first

adding (some) variables of env2, and then removing (some) variables of env1. Return NULL

if env1 and env2 ar enot compatible environments.

Chapter 7: Level 1 of the interface 49

[Function]ap_environment_t* ap_environment_lce (ap environment t* env1,
ap environment t* env2, ap dimchange t** dimchange1, ap dimchange t**
dimchange2)

Least common environment to two enviroenments.

• Assume ap_environment_is_eq(env1,env2)==false

• If environments are not compatible (a variable has different types in the 2 environments),

return NULL

• Compute also in dimchange1 and dimchange2 the conversion transformations to the lce.

• If no dimensions to add to env1, this implies that env is actually env1. In this case,

*dimchange1==NULL. Otherwise, the function allocates the *dimchange1 with ap_

dimchange_alloc.

[Function]ap_environment_t* ap_environment_lce_array (ap environment t**
tenv, size t size, ap dimchange t*** ptdimchange)

Least common environment to an array of environments.

• Assume the size size of the array tenv is at least one;

• If all input environments are the same, *ptdimchange==NULL. Otherwise, compute in

*ptdimchange the conversion permutations

• If no dimensions to add to tenv[i], this implies that the result is actually tenv[i].

In this case, (*ptdimchange)[i]==NULL. Otherwise, the function allocates the

(*ptdimchange)[i] with ap_dimchange_alloc.

[Function]ap_environment_t* ap_environment_rename (ap environment t* env,
ap var t* tvar1, ap var t* tvar2, size t size, ap dimperm t* perm)

Rename the variables in the environment. size is the common size of arrays tvar1 and tvar2,

and perm is a result-parameter pointing to an existing but not initialized object of type

ap_dimperm_t.

The function applies the variable substitution tvar1[i]->tvar2[i] to the environment, and

returns the resulting environment and the allocated transformation permutation in *perm.

If the parameters are not valid, return NULL with perm->dim==NULL.

7.3 Linear expressions of level 1 (ap_linexpr1.h)

We manipulate here expressions of the form

a0.x0 + ...+ an.xn + b

where the coefficients a0, ..., an, b are of ap_coeff_t type (either scalars or intervals) and the

variables x0, ..., xn are of type ap_var_t.

The semantics of linear expressions is exact, in the sense that the arithmetic operations are

interpreted in the real (or rational) numbers. However, abstract domains are free to overapprox-

imate this exact semantics (this may occur when converting rational scalars to double type for

instance).

A special remark concerns integer variables. Abstract domains are assumed to perform the

operations involving linear expressions using a real/rational semantics, and then possibly to

reduce the result using the knowledge that integer variables may only take integer values.

This semantics coincides with the natural integer semantics of expressions involving

only integer variables only if the involved coefficients are all integers.

A typical counter-example to this is an assignement y := 1/3x where x and y are

integer variables. If this assignement is applied to the Box abstract domain value

50 APRON 0.9.12

xin[1; 1], it may lead to the bottom value, because one will first obtain yin[1/3; 1/3]

by real/rational computations, and this may be reduced to the empty interval be-

cause y is integer and the interval contains no integer values.

If you need expressions with a less simple semantics (mixing integer, real/rational and

floating-point semantics with casts), you should use tree expressions (see Section 7.6 [Tree ex-

pressions of level 1], page 58).

[datatype]ap_linexpr1_t

(Internal) type of interval linear expressions.

Linear expressions of level 1 are created as objects of type ap_linexpr1_t, not as pointers

of type ap_linexpr1_t*.

For information:

typedef struct ap_linexpr1_t {

ap_linexpr0_t* linexpr0;

ap_environment_t* env;

} ap_linexpr1_t;

7.3.1 Allocating linear expressions of level 1

[Function]ap_linexpr1_t ap_linexpr1_make (ap environment t* env,
ap linexpr discr t lin_discr, size t size)

Build a linear expressions on the environment env, with by default coefficients of type

SCALAR and DOUBLE.

If lin discr selects a dense representation, the size of the expression is the size of the en-

vironment. Otherwise, the initial size is given by size and the expression may be resized

lazily.

[Function]void ap_linexpr1_minimize (ap linexpr1 t* expr)

Reduce the coefficients (transform intervals into scalars when possible). In case of sparse

representation, also remove zero coefficients.

[Function]ap_linexpr1_t ap_linexpr1_copy (ap linexpr1 t* expr)

Duplication.

[Function]void ap_linexpr1_clear (ap linexpr1 t expr)
Clear the linear expression.

[Function]void ap_linexpr1_fprint (FILE* stream, ap linexpr1 t* expr)

Print the linear expression on stream stream.

7.3.2 Tests on linear expressions of level 1

[Function]bool ap_linexpr1_is_integer (ap linexpr1 t* expr)

Does the expression depends only on integer variables ?

[Function]bool ap_linexpr1_is_real (ap linexpr1 t* expr)

Does the expression depends only on real variables ?

[Function]bool ap_linexpr1_is_linear (ap linexpr1 t* expr)

Return true iff all involved coefficients are scalars.

[Function]bool ap_linexpr1_is_quasilinear (ap linexpr1 t* expr)

Return true iff all involved coefficients but the constant are scalars.

Chapter 7: Level 1 of the interface 51

7.3.3 Access to linear expressions of level 1

[Function]ap_environment_t* ap_linexpr1_envref (ap linexpr1 t* expr)

Get a reference to the underlying environment. Do not free it.

[Function]size_t ap_linexpr1_linexpr0ref (ap linexpr1 t* expr)

Get a reference to the underlying linear expression of level 0. Do not free it.

7.3.3.1 Getting references

[Function]ap_coefft* ap_linexpr1_cstref (ap linexpr1 t* e)

Get a reference to the constant. Do not free it.

[Function]ap_coefft* ap_linexpr1_coeffref (ap linexpr1 t* e, ap var t var)
Get a reference to the coefficient associated to the variable var in expression e.

Do not free it. In case of sparse representation, possibly induce the addition of a new linear

term.

Return NULL if var is unknown in the environment of e.

7.3.3.2 Getting values

[Function]void ap_linexpr1_get_cst (ap coefft* coeff, ap linexpr1 t* e)

Assign to coeff the constant coefficient of e.

[Function]bool ap_linexpr1_get_coeff (ap coefft* coeff, ap linexpr1 t* e,
ap var t var)

Assign to coeff the coefficient of variable var in the expression e.

Return true in case ap_linexpr1_coeffref(e,dim) returns NULL.

[Macro]ap_linexpr1_ForeachLinterm (ap linexpr1 t* e, size t i, ap ap var t
var, ap coeff t* coeff)

Iterator on the coefficients associated to variables.

ap_linexpr1_ForeachLinterm(E,I,VAR,COEFF){ body } executes the body for each pair

(coeff,var) in the expression e. coeff is a reference to the coefficient associated to variable

var in e. i is an auxiliary variable used internally by the macro.

7.3.3.3 Assigning values with a list of arguments

[Function]bool ap_linexpr1_set_list (ap linexpr1 t* e, ...)
This function assign the linear expression e from a list of tags of type ap_coefftag_t, each

followed by a number of arguments as specified in the definition of the type ap_coefftag_t

(see Section 8.2.3 [Access to linear expressions of level 0], page 75). The list should end with

the tag AP_COEFF_END. The only difference with level 0 is that variables replace dimensions

in the list.

Return true in case ap_linexpr1_coeffref (e,dim) returns NULL for one of the variables

involved.

Here is a typical example, in the case where ap_var_t is actually char* (the default):

ap_linexpr1_set_list(e,

AP_COEFF_S_INT, 3, "x",

AP_COEFF_S_FRAC, 3,2, "y",

AP_COEFF_S_DOUBLE, 4.1, "z",

52 APRON 0.9.12

AP_CST_I_DOUBLE, -2.4, 3.6,

AP_END); /* Do not forget the last tatg ! */

which transforms an null expression into 3 x + 3/2 y + 4.1 z + [-2.4,3.6] and is equivalent

to:

ap_linexpr1_set_coeff_scalar_int(e, "x", 3);

ap_linexpr1_set_coeff_scalar_frac(e, "y", 3,2);

ap_linexpr1_set_coeff_scalar_double(e, "z", 4.1);

ap_linexpr1_set_cst_interval_double(e, -2.4, 3.6);

7.3.3.4 Assigning values

[Function]void ap_linexpr1_set_cst (ap linexpr1 t* e, ap coefft* coeff)

[Function]void ap_linexpr1_set_cst_scalar (ap linexpr1 t* e, ap scalar t*
scalar)

[Function]void ap_linexpr1_set_cst_scalar_int (ap linexpr1 t* e, int num)
[Function]void ap_linexpr1_set_cst_scalar_frac (ap linexpr1 t* e, int num,

unsigned int den)
[Function]void ap_linexpr1_set_cst_scalar_double (ap linexpr1 t* e, double

num)

[Function]void ap_linexpr1_set_cst_interval (ap linexpr1 t* e, ap interval t*
itv)

[Function]void ap_linexpr1_set_cst_interval_scalar (ap linexpr1 t* e,
ap scalar t* inf, ap scalar t* sup)

[Function]void ap_linexpr1_set_cst_interval_int (ap linexpr1 t* e, int inf,
int sup)

[Function]void ap_linexpr1_set_cst_interval_frac (ap linexpr1 t* e, int
numinf, unsigned int deninf, int numsup, unsigned int densup)

[Function]void ap_linexpr1_set_cst_interval_double (ap linexpr1 t* e,
double inf, double sup)

Set the constant coefficient of expression e.

[Function]bool ap_linexpr1_set_coeff (ap linexpr1 t* e, ap var t var,
ap coefft* coeff)

[Function]bool ap_linexpr1_set_coeff_scalar (ap linexpr1 t* e, ap var t var,
ap scalar t* scalar)

[Function]bool ap_linexpr1_set_coeff_scalar_int (ap linexpr1 t* e, ap var t
var, int num)

[Function]bool ap_linexpr1_set_coeff_scalar_frac (ap linexpr1 t* e, ap var t
var, int num, unsigned int den)

[Function]bool ap_linexpr1_set_coeff_scalar_double (ap linexpr1 t* e,
ap var t var, double num)

[Function]bool ap_linexpr1_set_coeff_interval (ap linexpr1 t* e, ap var t
var, ap interval t* itv)

[Function]bool ap_linexpr1_set_coeff_interval_scalar (ap linexpr1 t* e,
ap var t var, ap scalar t* inf, ap scalar t* sup)

[Function]bool ap_linexpr1_set_coeff_interval_int (ap linexpr1 t* e,
ap var t var, int inf, int sup)

Chapter 7: Level 1 of the interface 53

[Function]bool ap_linexpr1_set_coeff_interval_frac (ap linexpr1 t* e,
ap var t var,int numinf, unsigned int deninf, int numsup, unsigned int
densup)

[Function]void ap_linexpr1_set_coeff_interval_double (ap linexpr1 t* e,
ap var t var, double inf, double sup)

Set the coefficient of the variable var of expression e.

Return true in case ap_linexpr1_coeffref(e,var) returns NULL.

7.3.4 Change of dimensions and permutations of linear expressions of
level 1

[Function]bool ap_linexpr1_extend_environment (ap linexpr1 t* nexpr,
ap linexpr1 t* expr, ap environment t* nenv)

[Function]bool ap_linexpr1_extend_environment_with (ap linexpr1 t* expr,
ap environment t* nenv)

Change the current environment of the expression expr with a super-environment nenv.

Return true if nenv is not a superenvironment.

The first version store the result in the uninitialized *nexpr, the second one updates in-place

its argument.

7.4 Linear constraints of level 1 (ap_lincons1.h)

[datatype]ap_lincons1_t

Datatype for constraints.

For information:

typedef struct ap_lincons1_t {

ap_lincons0_t lincons0;

ap_environment_t* env;

} ap_lincons1_t;

Constraints are meant to be manipulated freely via their components. Creating the constraint

[1,2]x + 5/2 y >=0 and then freeing it can be done with

ap_lincons1_t cons = ap_lincons1_make(AP_CONS_SUPEQ,

ap_linexpr1_alloc(env,AP_LINEXPR_SPARSE,2),

NULL);

ap_lincons1_set_list(&cons,

AP_COEFF_I_INT, 1,2, "x",

AP_COEFF_S_FRAC, 5,2, "y",

AP_END);

ap_lincons1_clear(&cons);

[datatype]ap_lincons1_array_t

typedef struct ap_lincons1_array_t {

ap_lincons0_array_t lincons0_array;

ap_environment_t* env;

} ap_lincons1_array_t;

Datatype for arrays of constraints.

Arrays at level 1 cannot be accessed directly, for example by writing array->p[i], but should

instead be accessed with functions ap_lincons1_array_get and ap_lincons1_array_set.

54 APRON 0.9.12

7.4.1 Allocating linear constraints of level 1

[Function]ap_lincons1_t ap_lincons1_make (ap constyp t constyp,
ap linexpr1 t* linexpr, ap scalar t* mod)

Create a constraint of type constyp with the expression linexpr, and the modulo mod in case

of a congruence constraint (constyp==AP_CONS_EQMOD).

The expression is not duplicated, just pointed to, so it becomes managed via the constraint.

[Function]ap_lincons1_t ap_lincons1_make_unsat (ap environment t* env)

Create the constraint -1>=0.

[Function]ap_lincons1_t ap_lincons1_copy (ap lincons1 t* cons)

Duplication

[Function]void ap_lincons1_clear (ap lincons1 t* cons)

Clear the constraint and set pointers to NULL.

[Function]void ap_lincons1_fprint (FILE* stream, ap lincons1 t* cons);
Print the linear constraint on stream stream.

7.4.2 Tests on linear constraints of level 1

[Function]bool ap_lincons1_is_unsat (ap lincons1 t* cons)

Return true if the constraint is not satisfiable (b>=0 or [a,b]>=0 with b negative).

7.4.3 Access to linear constraints of level 1

[Function]ap_environment_t* ap_lincons1_envref (ap lincons1 t* cons)

Get a reference to the environment. Do not free it.

[Function]ap_constyp_t* ap_lincons1_constypref (ap lincons1 t* cons)

Get a reference to the type of constraint. You may use the reference to modify the constraint

type.

[Function]ap_linexpr1_t ap_lincons1_linexpr1ref (ap lincons1 t* cons)

Get a reference to the underlying expression of the constraint. Do not free it: nothing

is duplicated. Modifying the argument or the result is equivalent, except for change of

dimensions/environment.

[Function]void ap_lincons1_get_cst (ap coeff t* coeff, ap lincons1 t* cons)

[Function]void ap_lincons1_set_cst (ap lincons1 t* cons, ap coeff t* cst)
[Function]bool ap_lincons1_get_coeff (ap coeff t* coeff, ap lincons1 t* cons,

ap var t var)
[Function]bool ap_lincons1_set_coeff (ap lincons1 t* cons, ap var t var,

ap coeff t* coeff)

[Function]bool ap_lincons1_set_list (ap lincons1 t* cons, ...)
[Function]ap_coeff_t* ap_lincons1_cstref (ap lincons1 t* cons)

[Function]ap_coeff_t* ap_lincons1_coeffref (ap lincons1 t* cons, ap var t
var)

Identical to corresponding ap_linexpr1_XXX functions (see Section 7.3.3 [Access to linear

expressions of level 1], page 51).

Chapter 7: Level 1 of the interface 55

[Function]ap_lincons0_t* ap_lincons1_lincons0ref (ap lincons1 t* cons)

Return underlying constraint of level 0. Do not free it: nothing is duplicated. Modifying the

argument or the result is equivalent, except for change of dimensions/envionment.

7.4.4 Change of dimensions and permutations of linear constraints of
level 1

[Function]bool ap_lincons1_extend_environment (ap lincons1 t* ncons,
ap lincons1 t* cons, ap environment t* nenv)

[Function]bool ap_lincons1_extend_environment_with (ap lincons1 t* cons,
ap environment t* nenv)

Identical to corresponding ap_linexpr1_XXX functions (see Section 7.3.4 [Change of dimen-

sions and permutations of linear expressions of level 1], page 53).

7.4.5 Arrays of linear constraints of level 1

[Function]ap_lincons1_array_t ap_lincons1_array_make (ap environment t*
env, size t size)

Allocate an array of constraints of size size, defined on the environment env.

The constraints are initialized with NULL pointers for underlying expressions.

[Function]void ap_lincons1_array_clear (ap lincons1 array t* array)

Clear the constraints of the array, and then the array itself.

[Function]void ap_lincons1_array_fprint (FILE* stream, ap lincons1 array t*
array)

Print the array on the stream.

[Function]size_t ap_lincons1_array_size (ap lincons1 array t* array)

Return the size of the array.

[Function]ap_environment_t* ap_lincons1_array_envref (ap lincons1 array t*
array)

Get a reference to the environment. Do not free it.

[Function]ap_lincons1_t ap_lincons1_array_get (ap lincons1 array t* array,
size t index)

Return the linear constraint of the given index. Nothing is duplicated, and the result should

never be cleared. Modifying the argument or the result is equivalent, except for change of

environments

[Function]bool ap_lincons1_array_set (ap lincons1 array t* array, size t
index, ap lincons1 t* cons)

Fill the index of the array with the constraint. Assumes ap_environment_is_

eq(array->env,cons->env). Nothing is duplicated. The argument should never be cleared

(its environment is dereferenced). If a constraint was already stored, it is first cleared.

Return true iff problem (index or array->env!=cons->env)

[Function]void ap_lincons1_array_clear_index (ap lincons1 array t* array,
size t index)

Clear the constraint at index index.

56 APRON 0.9.12

[Function]bool ap_lincons1_array_extend_environment_with

(ap lincons1 array t* array, ap environment t* nenv)

[Function]bool ap_lincons1_array_extend_environment (ap lincons1 array t*
narray, ap lincons1 array t* array, ap environment t* nenv)

Identical to corresponding ap_linexpr1_XXX functions (see Section 7.3.4 [Change of dimen-

sions and permutations of linear expressions of level 1], page 53).

7.5 generators of level 1 (ap_generator1.h)

[datatype]ap_generator1_t

Datatype for generators.

For information:

typedef struct ap_generator1_t {

ap_generator0_t generator0;

ap_environment_t* env;

} ap_generator1_t;

Generators are meant to be manipulated freely via their components. Creating the ray

generator x+2/3y and then freeing it can be done with

ap_generator1_t gen = ap_generator1_make(AP_GEN_RAY,

ap_linexpr1_alloc(env,AP_LINEXPR_SPARSE,2));

ap_generator1_set_list(&gen,

AP_COEFF_S_INT, 1, "x",

AP_COEFF_S_FRAC, 2,3, "y",

AP_END);

ap_generator1_clear(&gen);

[datatype]ap_generator1_array_t

typedef struct ap_generator1_array_t {

ap_generator0_array_t generator0_array;

ap_environment_t* env;

} ap_generator1_array_t;

Datatype for arrays of generators.

Arrays at level 1 cannot be accessed directly, for example by writing array->p[i], but should

instead be accessed with functions ap_generator1_array_get and ap_generator1_array_

set.

7.5.1 Allocating generators of level 1

[Function]ap_generator1_t ap_generator1_make (ap gentyp t gentyp,
ap linexpr1 t* linexpr)

Create a generator of type gentyp with the expression linexpr.

The expression is not duplicated, just pointed to, so it becomes managed via the generator.

[Function]ap_generator1_t ap_generator1_copy (ap generator1 t* gen)

Duplication

[Function]void ap_generator1_clear (ap generator1 t* gen)

Clear the generator and set pointers to NULL.

Chapter 7: Level 1 of the interface 57

[Function]void ap_generator1_fprint (FILE* stream, ap generator1 t* gen);
Print the linear generator on stream stream.

7.5.2 Access to generators of level 1

[Function]ap_environment_t* ap_generator1_envref (ap generator1 t* gen)

Get a reference to the environment. Do not free it.

[Function]ap_gentyp_t* ap_generator1_gentypref (ap generator1 t* gen)

Get a reference to the type of generator. You may use the reference to modify the generator

type.

[Function]ap_linexpr1_t ap_generator1_linexpr1ref (ap generator1 t* gen)

Get a reference to the underlying expression of the generator. Do not free it: nothing

is duplicated. Modifying the argument or the result is equivalent, except for change of

dimensions/environment.

[Function]void ap_generator1_get_cst (ap coeff t* coeff, ap generator1 t*
gen)

[Function]void ap_generator1_set_cst (ap generator1 t* gen, ap coeff t* cst)
[Function]bool ap_generator1_get_coeff (ap coeff t* coeff, ap generator1 t*

gen, ap var t var)
[Function]bool ap_generator1_set_coeff (ap generator1 t* gen, ap var t var,

ap coeff t* coeff)

[Function]bool ap_generator1_set_list (ap generator1 t* gen, ...)
[Function]ap_coeff_t* ap_generator1_cstref (ap generator1 t* gen)

[Function]ap_coeff_t* ap_generator1_coeffref (ap generator1 t* gen, ap var t
var)

Identical to corresponding ap_linexpr1_XXX functions (see Section 7.3.3 [Access to linear

expressions of level 1], page 51).

[Function]ap_generator0_t* ap_generator1_generator0ref (ap generator1 t*
gen)

Return underlying generator of level 0. Do not free it: nothing is duplicated. Modifying the

argument or the result is equivalent, except for change of dimensions/envionment.

7.5.3 Change of dimensions and permutations of generators of level 1

[Function]bool ap_generator1_extend_environment (ap generator1 t* ngen,
ap generator1 t* gen, ap environment t* nenv)

[Function]bool ap_generator1_extend_environment_with (ap generator1 t*
gen, ap environment t* nenv)

Identical to corresponding ap_linexpr1_XXX functions (see Section 7.3.4 [Change of dimen-

sions and permutations of linear expressions of level 1], page 53).

7.5.4 Arrays of generators of level 1

[Function]ap_generator1_array_t ap_generator1_array_make

(ap environment t* env, size t size)
Allocate an array of generators of size size, defined on the environment env.

The generators are initialized with NULL pointers for underlying expressions.

58 APRON 0.9.12

[Function]void ap_generator1_array_clear (ap generator1 array t* array)

Clear the generators of the array, and then the array itself.

[Function]void ap_generator1_array_fprint (FILE* stream,
ap generator1 array t* array)

Print the array on the stream.

[Function]size_t ap_generator1_array_size (ap generator1 array t* array)

Return the size of the array.

[Function]ap_environment_t* ap_generator1_array_envref

(ap generator1 array t* array)

Get a reference to the environment. Do not free it.

[Function]ap_generator1_t ap_generator1_array_get (ap generator1 array t*
array, size t index)

Return the linear generator of the given index Nothing is duplicated, and the result should

never be cleared. Modifying the argument or the result is equivalent, except for change of

environments

[Function]bool ap_generator1_array_set (ap generator1 array t* array, size t
index, ap generator1 t* gen)

Fill the index of the array with the generator. Assumes array->env==gen->env. Nothing

is duplicated. The argument should never be cleared. (its environment is dereferenced).

If a generator was already stored, it is first cleared. Return true iff problem (index or

array->env!=gen->env)

[Function]void ap_generator1_array_clear_index (ap generator1 array t*
array, size t index)

Clear the generator at index index.

[Function]bool ap_generator1_array_extend_environment_with

(ap generator1 array t* array, ap environment t* nenv)

[Function]bool ap_generator1_array_extend_environment

(ap generator1 array t* narray, ap generator1 array t* array,
ap environment t* nenv)

Identical to corresponding ap_linexpr1_XXX functions (see Section 7.3.4 [Change of dimen-

sions and permutations of linear expressions of level 1], page 53).

7.6 Tree expressions of level 1 (ap_texpr1.h)

We manipulate here general expressions described by the grammar

expr ::= cst|var|unope|e1binope2
Such tree expressions generalize linear expressions(see Section 7.3 [Linear expressions of level

1], page 49) in two ways:

• Non-linear operations are possible (multiplication, division, casts, ...)

• Semantics of operators is no longer restricted to real/rational semantics. Each operation is

parameterized by two parameters:

• a rounding type parameter, which indicates the destination type of the operation, and

influences how the rounding is performed;

• a rounding direction parameter, which defines the rounding mode.

Chapter 7: Level 1 of the interface 59

7.6.1 Datatypes for tree expressions of level 1

[datatype]ap_texpr1_t

Type of tree expressions.

Tree expressions of level 1 are created as objects of type ap_texpr1_t*. They are manipu-

lated in a functional way (except a few operations), unlike linear expressions on which most

operations acts by side-effects.

[datatype]ap_texpr_op_t

Operators (actually defined in ap_texpr0.h)

typedef enum ap_texpr_op_t {

/* Binary operators */

AP_TEXPR_ADD, AP_TEXPR_SUB, AP_TEXPR_MUL, AP_TEXPR_DIV,

AP_TEXPR_MOD, /* either integer or real, no rounding */

/* Unary operators */

AP_TEXPR_NEG /* no rounding */,

AP_TEXPR_CAST, AP_TEXPR_SQRT,

} ap_texpr_op_t;

[datatype]ap_texpr_rtype_t

Destination type of the operation for rounding (actually defined in ap_texpr0.h)

typedef enum ap_texpr_rtype_t {

AP_RTYPE_REAL, /* real (no rounding) */

AP_RTYPE_INT, /* integer */

AP_RTYPE_SINGLE, /* IEEE 754 32-bit single precision, e.g.: C’s float */

AP_RTYPE_DOUBLE, /* IEEE 754 64-bit double precision, e.g.: C’s double */

AP_RTYPE_EXTENDED, /* non-standard 80-bit double extended, e.g.: Intel’s long double */

AP_RTYPE_QUAD, /* non-standard 128-bit quadruple precision, e.g.: Motorola’s long double */

} ap_texpr_rtype_t;

[datatype]ap_texpr_rdir_t

Rounding mode (actually defined in ap_texpr0.h)

typedef enum ap_texpr_rdir_t {

AP_RDIR_NEAREST /* Nearest */

AP_RDIR_ZERO /* Zero (truncation for integers) */

AP_RDIR_UP /* + Infinity */

AP_RDIR_DOWN /* - Infinity */

AP_RDIR_RND, /* All possible mode, non deterministically */

AP_RDIR_SIZE /* Not to be used ! */

} ap_texpr_rdir_t;

7.6.2 Constructors/Destructors for tree expressions of level 1

Parameters of constructors are not memory-managed by the constructed expression, with the

important exception of expressions parameters (type ap_texpr1.h) are, which means that they

should not be freed afterwards.

[Function]ap_texpr1_t* ap_texpr1_cst (ap environment t* env, ap coeff t*
coeff)

[Function]ap_texpr1_t* ap_texpr1_cst_scalar (ap environment t* env,
ap scalar t* scalar)

60 APRON 0.9.12

[Function]ap_texpr1_t* ap_texpr1_cst_scalar_mpq (ap environment t* env,
mpq t mpq)

[Function]ap_texpr1_t* ap_texpr1_cst_scalar_int (ap environment t* env,
long int num)

[Function]ap_texpr1_t* ap_texpr1_cst_scalar_frac (ap environment t* env,
long int num, unsigned long int den)

[Function]ap_texpr1_t* ap_texpr1_cst_scalar_double (ap environment t* env,
double num)

[Function]ap_texpr1_t* ap_texpr1_cst_interval (ap environment t* env,
ap interval t* itv)

[Function]ap_texpr1_t* ap_texpr1_cst_interval_scalar (ap environment t*
env, ap scalar t* inf, ap scalar t* sup)

[Function]ap_texpr1_t* ap_texpr1_cst_interval_mpq (ap environment t* env,
mpq t inf, mpq t sup)

[Function]ap_texpr1_t* ap_texpr1_cst_interval_int (ap environment t* env,
long int inf, long int sup)

[Function]ap_texpr1_t* ap_texpr1_cst_interval_frac (ap environment t* env,
long int numinf, unsigned long int deninf, long int numsup, unsigned long
int densup)

[Function]ap_texpr1_t* ap_texpr1_cst_interval_double (ap environment t*
env, double inf, double sup)

[Function]ap_texpr1_t* ap_texpr1_cst_top (ap environment t* env)

Create a constant expression, on the environment env.

[Function]ap_texpr1_t* ap_texpr1_var (ap environment t* env, ap var t var)
Create a variable expression. Return NULL in the case var is unknown in env.

[Function]ap_texpr1_t* ap_texpr1_unop (ap texpr op t op, ap texpr1 t* opA,
ap texpr rtype t type, ap texpr rdir t dir)

[Function]ap_texpr1_t* ap_texpr1_binop (ap texpr op t op, ap texpr1 t* opA,
ap texpr1 t* opB, ap texpr rtype t type, ap texpr rdir t dir)

Create an expression from an operator and expression operand(s). Be aware that opA and

opB are memroy-managed by the result upon return.

[Function]ap_texpr1_t* ap_texpr1_copy (ap texpr1 t* expr)

(Deep) copy of a tree expression.

[Function]ap_texpr1_t* ap_texpr1_from_linexpr1 (ap linexpr1 t* linexpr)

Creation from a linear expression.

[Function]void ap_texpr1_free (ap texpr1 t* expr)

Free (recursively) a tree expression.

[Function]void ap_texpr1_fprint (FILE* stream, ap texpr1 t* e)

[Function]void ap_texpr1_print (ap texpr1 t* e)

Print the expression

7.6.3 Tests on tree expressions of level 1

[Function]bool ap_texpr1_equal (ap texpr1 t* e1, ap texpr1 t* e2)

Structural (recursive) equality

Chapter 7: Level 1 of the interface 61

[Function]bool ap_texpr1_has_var (ap texpr1 t* e, ap var t var)
Return true if variable var appears in the expression.

The next functions classifies tree expressions.

[Function]bool ap_texpr1_is_interval_cst (ap texpr1 t* e)

No variable, only constant leaves

[Function]bool ap_texpr1_is_interval_linear (ap texpr1 t* e)

Linear with possibly interval coefficients, no rounding

[Function]bool ap_texpr1_is_interval_polynomial (ap texpr1 t* e)

Polynomial with possibly interval coefficients, no rounding

[Function]bool ap_texpr1_is_interval_polyfrac (ap texpr1 t* e)

Polynomial fraction with possibly interval coefficients, no rounding

[Function]bool ap_texpr1_is_scalar (ap texpr1 t* e)

All coefficients are scalar (non-interval)

7.6.4 Operations on tree expressions of level 1

[Function]ap_texpr1_t* ap_texpr1_substitute (ap texpr1 t* e, ap var t var,
ap texpr1 t* dst)

Substitute every occurence of variable var with a copy of dst. Return NULL in case of

incorrect argument (w.r.t. var and/or environment compatibility).

[Function]ap_texpr1_t* ap_texpr1_extend_environment (ap texpr1 t* e,
ap environment t* nenv)

Change current environment with a super-environment. Return NULL if nenv is not a

superenvironment of e->env.

[Function]bool ap_texpr1_substitute_with (ap texpr1 t* e, ap var t var,
ap texpr1 t* dst)

[Function]bool ap_texpr1_extend_environment_with (ap texpr1 t* e,
ap environment t* nenv)

Side-effect versions of the previous functions. Return true instead of NULL in case of problem.

7.7 Tree constraints of level 1 (ap_tcons1.h)

Tree constraints are constraints built on tree expressions.

7.7.1 Datatypes for tree constraints of level 1

[datatype]ap_tcons1_t

Datatype for constraints.

For information:

typedef struct ap_tcons1_t {

ap_tcons0_t tcons0;

ap_environment_t* env;

} ap_tcons1_t;

[datatype]ap_tcons1_array_t

typedef struct ap_tcons1_array_t {

62 APRON 0.9.12

ap_tcons0_array_t tcons0_array;

ap_environment_t* env;

} ap_tcons1_array_t;

Datatype for arrays of constraints.

Arrays at level 1 cannot be accessed directly, for example by writing array->p[i], but should

instead be accessed with functions ap_tcons1_array_get and ap_tcons1_array_set.

7.7.2 Constructors/Destructors for tree constraints of level 1

[Function]ap_tcons1_t ap_tcons1_make (ap constyp t constyp, ap texpr1 t*
expr, ap scalar t* scalar)

Create a constraint of given type with the given expression. The expression and the optional

coefficient are not duplicated, just pointed to.

[Function]ap_tcons1_t ap_tcons1_from_lincons1 (ap tcons1 t* cons)

Create a tree constraint from a linear constraint.

[Function]ap_tcons1_t ap_tcons1_copy (ap tcons1 t* cons)

Duplication.

[Function]void ap_tcons1_clear (ap tcons1 t* cons)

Clear the constraint and set pointers to NULL.

[Function]void ap_tcons1_fprint (FILE* stream, ap tcons1 t* cons)

[Function]void ap_tcons1_print (ap tcons1 t* cons)

Printing

[Function]ap_environment_t* ap_tcons1_envref (ap tcons1 t* cons)

Get a reference to the environment. Do not free it.

[Function]ap_constyp_t* ap_tcons1_constypref (ap tcons1 t* cons)

Get a reference to the type of constraint.

[Function]ap_scalar_t* ap_tcons1_scalarref (ap tcons1 t* cons)

Get a reference to the auxiliary coefficient of the constraint.

[Function]ap_texpr1_t ap_tcons1_texpr1ref (ap tcons1 t* cons)

Get a reference to the underlying expression of the constraint. Do not free it: nothing

is duplicated. Modifying the argument or the result is equivalent, except for change of

dimensions/environment.

[Function]ap_tcons0_t* ap_tcons1_tcons0ref (ap tcons1 t* cons)

Return underlying constraint of level 0. Do not free it: nothing is duplicated. Modifying the

argument or the result is equivalent, except for change of dimensions/envionment.

7.7.3 Operations on tree constraints of level 1

[Function]bool ap_tcons1_extend_environment (ap tcons1 t* ncons,
ap tcons1 t* cons, ap environment t* nenv)

[Function]bool ap_tcons1_extend_environment_with (ap tcons1 t* cons,
ap environment t* nenv)

Change current environment with a super-environment. Return true if nenv is not a su-

perenvironment of e->env.

Chapter 7: Level 1 of the interface 63

7.7.4 Arrays of tree constraints of level 1

[Function]ap_tcons1_array_t ap_tcons1_array_make (ap environment t* env,
size t size)

Allocate an array of size constraints. The constraints are initialized with NULL pointers, so

that ap_tcons1_array_free may be safely called.

[Function]void ap_tcons1_array_clear (ap tcons1 array t* array)

Clear the constraints of the array, and then the array itself.

[Function]void ap_tcons1_array_fprint (FILE* stream, ap tcons1 array t*
array)

[Function]void ap_tcons1_array_print (ap tcons1 array t* array)

Printing.

[Function]size_t ap_tcons1_array_size (ap tcons1 array t* array)

Return the size of the array.

[Function]ap_environment_t* ap_tcons1_array_envref (ap tcons1 array t*
array)

Return a reference to the environment of the array. Do not free it.

[Function]void ap_tcons1_array_clear_index (ap tcons1 array t* array, size t
index)

Clear the constraint at index index and set pointers to NULL.

[Function]ap_tcons1_t ap_tcons1_array_get (ap tcons1 array t* array, size t
index)

Return the linear constraint of the given index Nothing is duplicated, and the result should

never be cleared. Modifying the argument or the result is equivalent, except for change of

environments.

[Function]bool ap_tcons1_array_set (ap tcons1 array t* array, size t index,
ap tcons1 t* cons)

Fill the index of the array with the constraint. Assumes ap_environment_is_

eq(array->env,cons->env). Nothing is duplicated. The argument should never be cleared

(its environment is dereferenced). If a constraint was already stored, it is first cleared.

Return true iff problem (index or array->env!=cons->env)

[Function]bool ap_tcons1_array_extend_environment_with (ap tcons1 array t*
array, ap environment t* nenv)

[Function]bool ap_tcons1_array_extend_environment (ap tcons1 array t*
narray, ap tcons1 array t* array, ap environment t* nenv)

Change current environment with a super-environment. Return true if nenv is not a su-

perenvironment of array->env.

7.8 Abstract values and operations of level 1 (ap_abstract1.h)

[datatype]ap_abstract1_t

Datatype for abstract values at level 1.

For information:

typedef struct ap_abstract1_t {

64 APRON 0.9.12

ap_abstract0_t* abstract0;

ap_environment_t* env;

} ap_abstract1_t;

/* data structure invariant:

ap_abstract0_integer_dimension(man,abstract0)== env->intdim &&

ap_abstract0_real_dimension(man,abstract0)== env->realdim */

[datatype]ap_box1_t

typedef struct ap_box1_t {

ap_interval_t** p;

ap_environment_t* env;

} ap_box1_t;

void ap_box1_fprint(FILE* stream, ap_box1_t* box);

void ap_box1_clear(ap_box1_t* box);

Most operations are offered in 2 versions: functional or destructive See Section 8.7 [Abstract

values and operations of level 0], page 82.

We remind the policy for redimensioning (see Chapter 7 [Level 1 of the interface], page 45):

• For functions taking one abstract value and one expression (or constraint or generator,

or array of ...), the environment of the expression should be a sub-environment of the

environment of the abstract value. The environment of the result is the environment of the

argument abstract value.

• For functions taking several abstract values, their environments should be the same. Oth-

erwise, it is up to the user to move them to a common super-environment (see Section 7.2

[Environments], page 46).

7.8.1 Allocating abstract values of level 1

[Function]ap_abstract1_t ap_abstract1_copy (ap manager t* man,
ap abstract1 t* a)

Return a copy of a, on which destructive update does not affect a.

[Function]void ap_abstract1_clear (ap manager t* man, ap abstract1 t* a)

Free all the memory used by a.

[Function]size_t ap_abstract1_size (ap manager t* man, ap abstract1 t* a)

Return the abstract size of a.

7.8.2 Control of internal representation of abstract values of level 1

[Function]void ap_abstract1_minimize (ap manager t* man, ap abstract1 t* a)

Minimize the size of the representation of a. This may result in a later recomputation of

internal information.

[Function]void ap_abstract1_canonicalize (ap manager t* man,
ap abstract1 t* a)

Put a in canonical form. (not yet clear definition).

[Function]int ap_abstract1_hash (ap manager t* man, ap abstract1 t* a)

Return an hash value for a. Two abstract values in canonical from (according to ap_

abstract1_canonicalize) and considered as equal by the function ap_abstract1_is_eq

are given the same hash value.

Chapter 7: Level 1 of the interface 65

[Function]void ap_abstract1_approximate (ap manager t* man, ap abstract1 t*
a, int algorithm)

Perform some transformation on a, guided by the field algorithm.

The transformation may lose information. The argument algorithm overrides the field algo-

rithm of the structure of type ap_funopt_t associated to ap_abstract1_approximate.

7.8.3 Printing abstract values of level 1

[Function]void ap_abstract1_fprint (FILE* stream, ap manager t* man,
ap abstract1 t* a)

Print a in a pretty way on the stream.

[Function]void ap_abstract1_fprintdiff (FILE* stream, ap manager t* man,
ap abstract1 t* a1, ap abstract1 t* a2)

Print the difference between a1 (old value) and a2 (new value). The meaning of difference is

library dependent.

[Function]void ap_abstract1_fdump (FILE* stream, ap manager t* man,
ap abstract1 t* a)

Dump the internal representation of a for debugging purposes.

7.8.4 Serialization of abstract values of level 1

[Function]ap_membuf_t ap_abstract1_serialize_raw (ap manager t* man,
ap abstract1 t* a)

Allocate a memory buffer (with malloc), output a in raw binary format to it and return a

pointer on the memory buffer and the number of bytes written. It is the user responsability

to free the memory afterwards (with free).

[Function]ap_abstract1_t ap_abstract1_deserialize_raw (ap manager t* man,
void* ptr, size t* size)

Return the abstract value read in raw binary format from the buffer pointed by ptr and store

in size the number of bytes read.

7.8.5 Constructors for abstract values of level 1

[Function]ap_abstract1_t ap_abstract1_bottom (ap manager t* man,
ap environment t* env)

[Function]ap_abstract1_t ap_abstract1_top (ap manager t* man,
ap environment t* env)

Create resp. a bottom (empty) value and a top (universe) value defined on the environment

env.

[Function]ap_abstract1_t ap_abstract1_of_box (ap manager t* man,
ap environment t* env, ap var t* tvar, ap interval t** tinterval, size t
size)

Abstract an hypercube defined by the arrays tvar and tintnerval of size size.

If no inclusion is specified for a variable in the environment, its value is no constrained in the

resulting abstract value.

66 APRON 0.9.12

7.8.6 Accessors for abstract values of level 1

[Function]ap_dimension_t ap_abstract1_environment (ap manager t* man,
ap abstract1 t* a)

Get a reference to the environment of a. Do not free it.

[Function]ap_manager_t* ap_abstract1_manager (ap abstract1 t* a)

Get a reference to the manager contained in a. Do not free it.

[Function]ap_dimension_t ap_abstract1_abstract0 (ap manager t* man,
ap abstract1 t* a)

Get a reference to the underlying abstract value of level 0 in a. Do not free it.

7.8.7 Tests on abstract values of level 1

In abstract tests,

• true means that the predicate is certainly true;

• false means false or don’t know (an exception has occurred, or the exact computation was

considered too expensive to be performed, according to the options).

[Function]bool ap_abstract1_is_bottom (ap manager t* man, ap abstract1 t* a)

[Function]bool ap_abstract1_is_top (ap manager t* man, ap abstract1 t* a)

Emtpiness and universality tests.

[Function]bool ap_abstract1_is_leq (ap manager t* man, ap abstract1 t* a1,
ap abstract1 t* a2)

[Function]bool ap_abstract1_is_eq (ap manager t* man, ap abstract1 t* a1,
ap abstract1 t* a2)

Inclusion and equality tests.

[Function]bool ap_abstract1_sat_interval (ap manager t* man,
ap abstract1 t* a, ap var t var, ap interval t* interval)

Is the variable var included in the interval interval in the abstract value a ?

[Function]bool ap_abstract1_sat_lincons (ap manager t* man, ap abstract1 t*
a, ap lincons1 t* cons)

[Function]bool ap_abstract1_sat_tcons (ap manager t* man, ap abstract1 t* a,
ap tcons1 t* cons)

Does the abstract value a satisfy the constraint cons ?

[Function]bool ap_abstract1_is_variable_unconstrained (ap manager t* man,
ap abstract1 t* a, ap var t var)

Is the dimension dim unconstrained in the abstract value a ? If it is the case, we have

forget(man,a,dim) == a.

7.8.8 Extraction of properties of abstract values of level 1

[Function]ap_interval_t* ap_abstract1_bound_variable (ap manager t* man,
ap abstract1 t* a, ap var t var)

Return the interval taken by the variable var over the abstract value a.

Chapter 7: Level 1 of the interface 67

[Function]ap_interval_t* ap_abstract1_bound_linexpr (ap manager t* man,
ap abstract1 t* a, ap linexpr1 t* expr)

[Function]ap_interval_t* ap_abstract1_bound_texpr (ap manager t* man,
ap abstract1 t* a, ap texpr1 t* expr)

Return the interval taken by the expression expr over the abstract value a.

In the case of truly linear expression, this function allows to solve a Linear Programming

(LP) problem, but depending on the underlying domain the solution may be not optimal.

[Function]ap_box1_t ap_abstract1_to_box (ap manager t* man, ap abstract1 t*
a)

Convert a to an interval/hypercube.

[Function]ap_lincons1_array_t ap_abstract1_to_lincons_array

(ap manager t* man, ap abstract1 t* a)

[Function]ap_tcons1_array_t ap_abstract1_to_tcons_array (ap manager t*
man, ap abstract1 t* a)

Convert a to a conjunction of linear (resp. tree) constraints.

The constraints are normally guaranteed to be without intervals.

[Function]ap_generator1_array_t ap_abstract1_to_generator_array

(ap manager t* man, ap abstract1 t* a)

Convert a to an array of generators.

7.8.9 Meet and Join of abstract values of level 1

[Function]ap_abstract1_t ap_abstract1_meet (ap manager t* man, bool
destructive, ap abstract1 t* a1, ap abstract1 t* a2)

[Function]ap_abstract1_t ap_abstract1_join (ap manager t* man, bool
destructive, ap abstract1 t* a1, ap abstract1 t* a2)

Meet and Join of 2 abstract values

[Function]ap_abstract1_t ap_abstract1_meet_array (ap manager t* man,
ap abstract1 t* array, size t size)

[Function]ap_abstract1_t ap_abstract1_join_array (ap manager t* man,
ap abstract1 t* array, size t size)

Meet and Join of the array array of abstract values of size size.

Raise an AP_EXC_INVALID_ARGUMENT exception if size==1 (no way to define the environment

of the result in such a case).

[Function]ap_abstract1_t ap_abstract1_meet_lincons_array (ap manager t*
man, bool destructive, ap abstract1 t* a, ap lincons1 array t* array)

[Function]ap_abstract1_t ap_abstract1_meet_tcons_array (ap manager t*
man, bool destructive, ap abstract1 t* a, ap tcons1 array t* array)

Meet of the abstract value a with the set of constraints array.

[Function]ap_abstract1_t ap_abstract1_add_ray_array (ap manager t* man,
bool destructive, ap abstract1 t* a, ap generator1 array t* array)

Generalized time elapse operator.

array is supposed to contain only rays or lines, no vertices.

68 APRON 0.9.12

7.8.10 Assignements and Substitutions of abstract values of level 1

[Function]ap_abstract1_t ap_abstract1_assign_linexpr_array

(ap manager t* man, bool destructive, ap abstract1 t* org, ap var t*
tvar, ap linexpr1 t* texpr, size t size, ap abstract1 t* dest)

[Function]ap_abstract1_t ap_abstract1_substitute_linexpr_array

(ap manager t* man, bool destructive, ap abstract1 t* org, ap var t*
tvar, ap linexpr1 t* texpr, size t size, ap abstract1 t* dest)

[Function]ap_abstract1_t ap_abstract1_assign_texpr_array (ap manager t*
man, bool destructive, ap abstract1 t* org, ap var t* tvar, ap texpr1 t*
texpr, size t size, ap abstract1 t* dest)

[Function]ap_abstract1_t ap_abstract1_substitute_texpr_array

(ap manager t* man, bool destructive, ap abstract1 t* org, ap var t*
tvar, ap texpr1 t* texpr, size t size, ap abstract1 t* dest)

Parallel Assignement and Substitution of several variables by expressions in abstract value

org.

dest is an optional argument. If not NULL, semantically speaking, the result of the trans-

formation is intersected with dest. This is useful for precise backward transformations in

lattices like intervals or octagons.

7.8.11 Existential quantification of abstract values of level 1

[Function]ap_abstract1_t ap_abstract1_forget_array (ap manager t* man,
bool destructive, ap abstract1 t* a, ap var t* tvar, size t size, bool
project)

Forget (project=false) or Project (project=true) the array of variables tvar of size size

in the abstract value a.

7.8.12 Change of environments of abstract values of level 1

[Function]ap_abstract1_t ap_abstract1_change_environment (ap manager t*
man, bool destructive, ap abstract1 t* a, ap environment t* nenv, bool
project)

Change the environment of the abstract values. Variables that are removed are first

existentially quantified, and variables that are introduced are either unconstrained

(project==false) or initialized to 0 (project==false).

[Function]ap_abstract1_t ap_abstract1_minimize_environment

(ap manager t* man, bool destructive, ap abstract1 t* a)

Remove from the environment of the abstract value and from the abstract value itself variables

that are unconstrained in it.

[Function]ap_abstract1_t ap_abstract1_rename_array (ap manager t* man,
bool destructive, ap abstract1 t* a, ap var t* tvar, ap var t* ntvar,
size t size)

Parallel renaming of the environment of the abstract value. The new variables should not

interfere with the variables that are not renamed.

7.8.13 Expansion and Folding of dimensions of abstract values of level
1

Formally, expanding z into z and w in abstract value (predicate) P is defined by

expand(P (x, y, z), z, w) = P (x, y, z)andP (x, y, w).

Chapter 7: Level 1 of the interface 69

Conversely, folding z and w into z in abstract value (predicate) Q is defined by

fold(Q(x, y, z, w), z, w) = (existsw : Q(x, y, z, w))or(existsz : Q(x, y, z, w)[z < −w]).

[Function]ap_abstract1_t ap_abstract1_expand (ap manager t* man, bool
destructive, ap abstract1 t* a, ap var t var, ap var t* tvar, size t size)

Expand the variable var into itself + the size additional variables of the array tvar, which are

given the same type as var. The additional variables are added to the environment of the

argument for making the environment of the result, so they should not belong to the initial

environment.

It results in size+1 unrelated variables having same relations with other dimensions.

[Function]ap_abstract1_t ap_abstract1_fold (ap manager t* man, bool
destructive, ap abstract1 t* a, ap var t* tvar, size t size)

Fold the variables in the array tvar of size size>=1 and put the result in the first variable in

the array. The other variables of the array are then forgot and removed from the environment.

7.8.14 Widening of abstract values of level 1

[Function]ap_abstract1_t ap_abstract1_widening (ap manager t* man,
ap abstract1 t* a1, ap abstract1 t* a2)

Widening of a1 with a2. a1 is supposed to be included in a2.

[Function]ap_abstract1_t ap_abstract1_widening_threshold (ap manager t*
man, ap abstract1 t* a1, ap abstract1 t* a2, ap lincons1 array t* array)

Widening with threshold.

Intersect the result of the standard widening with all the constraints in array that are satisfied

by both a1 and a2.

7.8.15 Topological closure of abstract values of level 1

[Function]ap_abstract1_t* ap_abstract1_closure (ap manager t* man, bool
destructive, ap abstract1 t* a)

Relax strict constraints into non strict constraints.

7.8.16 Additional functions on abstract values of level 1

[Function]ap_abstract1_t ap_abstract1_of_lincons_array (ap manager t*
man, ap environment t* env, ap lincons1 array t* array)

[Function]ap_abstract1_t ap_abstract1_of_tcons_array (ap manager t* man,
ap environment t* env, ap tcons1 array t* array)

Abstract a conjunction of constraints. The environment of the array should be a subset of

the environment env.

[Function]ap_abstract1_t ap_abstract1_assign_linexpr (ap manager t* man,
bool destructive, ap abstract1 t* org, ap var t var, ap linexpr1 t* expr,
ap abstract1 t* dest)

[Function]ap_abstract1_t ap_abstract1_substitute_linexpr (ap manager t*
man, bool destructive, ap abstract1 t* org, ap var t var, ap linexpr1 t*
expr, ap abstract1 t* dest)

[Function]ap_abstract1_t ap_abstract1_assign_texpr (ap manager t* man,
bool destructive, ap abstract1 t* org, ap var t var, ap texpr1 t* expr,
ap abstract1 t* dest)

70 APRON 0.9.12

[Function]ap_abstract1_t ap_abstract1_substitute_texpr (ap manager t*
man, bool destructive, ap abstract1 t* org, ap var t var, ap texpr1 t*
expr, ap abstract1 t* dest)

Assignement and Substitution of the dimension dim by the expression expr in abstract value

org.

dest is an optional argument. If not NULL, semantically speaking, the result of the trans-

formation is intersected with dest. This is useful for precise backward transformations in

lattices like intervals or octagons.

[Function]ap_abstract1_t ap_abstract1_unify (ap manager t* man, bool
destructive, ap abstract1 t* a1, ap abstract1 t* a2)

Unify two abstract values on their common variables, that is, embed them on the least

common environment and then compute their meet. The result is defined on the least common

environment.

For instance, the unification of 1<=x<=3 and x=y defined on { x, y } and 2<=z<=4 and z=y

defined on {y,z } results in 2<=x<=3 and x=y=z defined on {x,y,z}.

[Function]ap_linexpr1_t ap_abstract1_quasilinear_of_intlinear

(ap manager t* man, ap abstract1 t* a, ap linexpr1 t* expr)

Evaluate the interval linear expression expr on the abstract value a and approximate it by a

quasilinear expression.

This implies calls to ap_abstract0_bound_dimension.

[Function]ap_linexpr1_t ap_abstract1_intlinear_of_tree (ap manager t*
man, ap abstract1 t* a, ap texpr1 t* expr, bool quasilinear)

Evaluate the tree expression expr on the abstract value a and approximate it by an interval

linear (resp. quasilinear if quasilinear is true) expression.

This implies calls to ap_abstract0_bound_dimension.

71

8 Level 0 of the interface

This interface of level 0 is defined in ap_global0.h.

Unless there exists specific reasons for not doing so, we advise the user to use the level 1

of the interface (see Chapter 7 [Level 1 of the interface], page 45). The level 0 is intented for

implementors who wants to connect a new library/abstract domain, or who want to build a

composite domain from existing ones.

For information only (as most of these types are considered as abstract) and for implementors,

we sum up the involved types below.

ap_dim_t ap_dimension_t

|--------------| |----------------|

| unsigned int | | size_t intdim |

|--------------| | size_t realdim |

|----------------|

ap_dimchange_t ap_dimperm_t

|----------------| |-----------|

| ap_dim_t* dim | | ap_dim_t* |

| size_t intdim | | size_t |

| size_t realdim | |-----------|

|----------------|

ap_linexpr0_t ap_linterm_t

|-----------------------------| |------------|

| ap_coeff_t cst | | ap_dim_t |

| ap_linexpr_discr discr | | ap_coeff_t |

| size_t size | |------------|

|-----------------------------|

| ap_coeff_t* | ap_linterm_t* |

|-----------------------------|

ap_lincons0_t ap_generator0_t

|------------------| |----------------|

| ap_linexpr0_t* | | ap_linexpr0_t* |

| ap_constyp_t | | ap_gentyp_t |

| ap_scalar_t* mod | |----------------|

|------------------|

ap_abstract0_t

|---------------|

| void* |

| ap_manager_t* |

|---------------|

8.1 Dimensions and related operations (ap_dimension.h)

[datatype]ap_dim_t

typedef unsigned int ap_dim_t;

72 APRON 0.9.12

Datatype for dimensions.

[Macro]AP_DIM_MAX

Special value used for sparse representations, means: "to be ignored". Also used as a result

when an error occurs.

[datatype]ap_dimension_t

typedef struct ap_dimension_t {

size_t intdim; /* Number of integer dimensions */

size_t realdim; /* Number of real dimensions */

} ap_dimension_t;

Datatype for specifying the dimensionality of an abstract value.

[datatype]ap_dimchange_t

typedef struct ap_dimchange_t {

ap_dim_t* dim; /* Assumed to be an array of size intdim+realdim */

size_t intdim ; /* Number of integer dimensions to add/remove */

size_t realdim; /* Number of real dimensions to add/remove */

} ap_dimchange_t;

Datatype for specifying change of dimension.

The semantics is the following:

Addition of dimensions

dimchange.dim[k] means: add one dimension at dimension k and shift the al-

ready existing dimensions greater than or equal to k one step on the right (or

increment them).

if k is equal to the size of the vector, then it means: add a dimension at the end.

Repetion are allowed, and means that one inserts more than one dimensions.

Example: linexpr0_add_dimensions([i0 i1 r0 r1], { [0 1 2 2 4],3,1 }) re-

turns [0 i0 0 i1 0 0 r0 r1 0], considered as a vector with 5 integer dimensions

and 4 real dimensions.

Removal of dimensions

dimchange.dim[k]: remove the dimension k and shift the dimensions greater

than k one step on the left (or decrement them).

Repetitions are meaningless (and are not correct specification).

Example: linexpr0_remove_dimensions([i0 i1 i2 r0 r1 r2], { [0 2 4],2,1

}) returns [i1 r0 r2], considered as a vector with 1 integer dimensions and 2

real dimensions.

[datatype]ap_dimchange2_t

typedef struct ap_dimchange_2t {

ap_dimchange_t* add; /* If not NULL, specifies the adding new dimensions */

ap_dimchange_t* remove; /* If not NULL, specifies the removal of dimensions */

} ap_dimchange2_t;

Datatype for specifying a transformation composed of the addition and the removal of dimen-

sions. Used by functions ap_abstract0_apply_dimchange2, ap_environment_dimchange2,

and ap_abstract1_change_environment..

[datatype]ap_dimperm_t

typedef struct ap_dimperm_t {

Chapter 8: Level 0 of the interface 73

ap_dim_t* dim; /* Array assumed to be of size size */

size_t size;

} ap_dimperm_t;

Datatype for permutations.

Represents the permutation i -> dimperm.p[i] for 0<=i<dimperm.size.

8.1.1 Manipulating changes of dimensions

[Function]void ap_dimchange_init (ap dimchange t* dimchange, size t intdim,
size t realdim)

[Function]void ap_dimchange_clear (ap dimchange t* dimchange)

Initialize and clear a dimchange structure.

[Function]ap_dimchange_t* ap_dimchange_alloc (size t intdim, size t realdim)
[Function]void ap_dimchange_free (ap dimchange t* dimchange)

Allocate and free a dimchange structure.

[Function]void ap_dimchange_fprint (FILE* stream, ap dimchange t*
dimchange)

Print the change of dimension.

[Function]void ap_dimchange_add_invert (ap dimchange t* dimchange)

Assuming that dimchange is a transformation for the addition of dimensions, invert it to

obtain the inverse transformation for removing dimensions.

[Function]void ap_dimchange2_init (ap dimchange2 t* dimchange2,
ap dimchange t* add, ap dimchange t* remove)

[Function]void ap_dimchange2_clear (ap dimchange2 t* dimchange2)

Initialize (with add and remove) and clear a dimchange2 structure.

[Function]ap_dimchange2_t* ap_dimchange2_alloc (ap dimchange t* add,
ap dimchange t* remove)

[Function]void ap_dimchange2_free (ap dimchange2 t* dimchange2)

Allocate and free a dimchange2 structure.

[Function]void ap_dimchange2_fprint (FILE* stream, ap dimchange2 t*
dimchange2)

Print the change of dimension.

8.1.2 Manipulating permutations of dimensions

[Function]void ap_dimperm_init (ap dimperm t* perm, size t size)
[Function]void ap_dimperm_clear (ap dimperm t* perm)

Initialize and clear a dimperm structure.

[Function]ap_dimperm_t* ap_dimperm_alloc (size t size)
[Function]void ap_dimperm_free (ap dimperm t* perm)

Allocate and free a dimperm structure.

[Function]void ap_dimperm_fprint (FILE* stream, ap dimperm t* perm)

Print the permutation.

[Function]void ap_dimperm_set_id (ap dimperm t* perm)

Fill the already allocated perm with the identity permutation.

74 APRON 0.9.12

[Function]void ap_dimperm_compose (ap dimperm t* perm, ap dimperm t*
perm1, ap dimperm t* perm2)

Compose the 2 permutations perm1 and perm2 (in this order) and store the result the

already allocated perm. The sizes of permutations are supposed to be equal. At exit, we

have perm.dim[i] = perm2.dim[perm1.dim[i]].

[Function]void ap_dimperm_invert (ap dimperm t* nperm, ap dimperm t* perm)

Invert the permutation perm and store it in the already allocated nperm. The sizes of

permutations are supposed to be equal.

8.2 Linear expressions of level 0 (ap_linexpr0.h)

[datatype]ap_linexpr_discr_t

typedef enum ap_linexpr_discr_t {

LINEXPR_DENSE,

LINEXPR_SPARSE

} ap_linexpr_discr_t;

Type of representation of linear expressions: either dense or sparse.

[datatype]ap_linexpr0_t

Type of interval linear expressions. Coefficients in such expressions are of type coeff_t.

8.2.1 Allocating linear expressions of level 0

[Function]ap_linexpr0_t* ap_linexpr0_alloc (ap linexpr discr t lin_discr,
size t size);

Allocate a linear expressions with coefficients by default of type SCALAR and DOUBLE. If

sparse representation, corresponding new dimensions are initialized with AP_DIM_MAX.

[Function]void ap_linexpr0_realloc (ap linexpr0 t* e, size t size)
Change the dimensions of the array in e. If new coefficients are added, their type is of

type SCALAR and DOUBLE. If sparse representation, corresponding new dimensions are

initialized with AP_DIM_MAX.

[Function]void ap_linexpr0_minimize (ap linexpr0 t* e)

Reduce the coefficients (transform intervals into scalars when possible). In case of sparse

representation, also remove zero coefficients.

[Function]void ap_linexpr0_free (ap linexpr0 t* e);
Deallocate the linear expression.

[Function]ap_linexpr0_t* ap_linexpr0_copy (ap linexpr0 t* e)

Duplication.

[Function]void ap_linexpr0_fprint (FILE* stream, ap linexpr0 t* e, char**
name_of_dim);

Print the linear expression on stream stream, using the array name of dim to convert dimen-

sions to variable names. If name of dim is NULL, the dimensions are named x0,x1,....

8.2.2 Tests on linear expressions of level 0

[Function]bool ap_linexpr0_is_integer (ap linexpr0 t* e, size t intdim)
Does the expression depends only on integer variables ? assuming that the first intdim

dimensions are integer.

Chapter 8: Level 0 of the interface 75

[Function]bool ap_linexpr0_is_real (ap linexpr0 t* e, size t intdim)
Does the expression depends only on real variables ? assuming that the first intdim dimensions

are integer .

[Function]bool ap_linexpr0_is_linear (ap linexpr0 t* e)

Return true iff all involved coefficients are scalars.

[Function]bool ap_linexpr0_is_quasilinear (ap linexpr0 t* e)

Return true iff all involved coefficients but the constant are scalars.

8.2.3 Access to linear expressions of level 0

[Function]size_t ap_linexpr0_size (ap linexpr0 t* e)

Get the size of the linear expression

8.2.3.1 Getting references

[Function]ap_coefft* ap_linexpr0_cstref (ap linexpr0 t* e)

Get a reference to the constant. Do not free it.

[Function]ap_coefft* ap_linexpr0_coeffref (ap linexpr0 t* e, ap dim t dim)
Get a reference to the coefficient associated to the dimension dim in expression e.

Do not free it. In case of sparse representation, possibly induce the addition of a new linear

term.

Return NULL if:

• In case of dense representation, dim>=e->size.

• In case of sparse representation, dim==AP_DIM_MAX.

8.2.3.2 Getting values

[Function]void ap_linexpr0_get_cst (ap coefft* coeff, ap linexpr0 t* e)

Assign to coeff the constant coefficient of e.

[Function]bool ap_linexpr0_get_coeff (ap coefft* coeff, ap linexpr0 t* e,
ap dim t dim)

Assign to coeff the coefficient of dimension dim in the expression e.

Return true in case ap_linexpr0_coeffref(e,dim) returns NULL.

[Macro]ap_linexpr0_ForeachLinterm (ap linexpr0 t* e, size t i, ap dim t dim,
ap coeff t* coeff)

Iterator on the coefficients associated to dimensions.

ap_linexpr0_ForeachLinterm(E,I,DIM,COEFF){ body } executes the body for each pair

(coeff,dim) in the expression e. coeff is a reference to the coefficient associated to dimension

dim in e. i is an auxiliary variable used internally by the macro.

8.2.3.3 Assigning values with a list of arguments

[datatype]ap_coefftag_t

typedef enum ap_coefftag_t {

AP_COEFF, /* waiting for a coeff_t* object and a dimension */

AP_COEFF_S, /* waiting for a scalar_t* object and a dimension */

AP_COEFF_S_MPQ, /* waiting for a mpq_t object and a dimension */

76 APRON 0.9.12

AP_COEFF_S_INT, /* waiting for a int object and a dimension */

AP_COEFF_S_FRAC, /* waiting for 2 int objects and a dimension */

AP_COEFF_S_DOUBLE, /* waiting for a double object and a dimension */

AP_COEFF_I, /* waiting for a interval_t* object and a dimension */

AP_COEFF_I_SCALAR, /* waiting for 2 scalar_t* objects and a dimension */

AP_COEFF_I_MPQ, /* waiting for 2 mpq_t objects and a dimension */

AP_COEFF_I_INT, /* waiting for 2 int objects and a dimension */

AP_COEFF_I_FRAC, /* waiting for 4 int objects and a dimension */

AP_COEFF_I_DOUBLE, /* waiting for 2 double objects and a dimension */

AP_CST, /* waiting for a coeff_t* object */

AP_CST_S, /* waiting for a scalar_t* object */

AP_CST_S_MPQ, /* waiting for a mpq_t object */

AP_CST_S_INT, /* waiting for a int object */

AP_CST_S_FRAC, /* waiting for 2 int objects */

AP_CST_S_DOUBLE, /* waiting for a double object */

AP_CST_I, /* waiting for a interval_t* object */

AP_CST_I_SCALAR, /* waiting for 2 scalar_t* objects */

AP_CST_I_MPQ, /* waiting for 2 mpq_t objects */

AP_CST_I_INT, /* waiting for 2 int objects */

AP_CST_I_FRAC, /* waiting for 4 int objects */

AP_CST_I_DOUBLE, /* waiting for 2 double objects */

AP_END /* indicating end of the list */

} ap_coefftag_t;

Tags for ap_linexpr0_set_list function.

[Function]bool ap_linexpr0_set_list (ap linexpr0 t* e, ...)
This function assign the linear expression E from a list of tags of type ap_coefftag_t, each

followed by a number of arguments as specified in the definition of the tye ap_coefftag_t.

The list should end with the tag AP_COEFF_END.

Return true in case ap_linexpr0_coeffref(e,dim) returns NULL for one of the dimensions

involved.

Here is a typical example:

ap_linexpr0_set_list(e,

AP_COEFF_S_INT, 3, 0,

AP_COEFF_S_FRAC, 3,2, 1,

AP_COEFF_S_DOUBLE, 4.1, 2,

AP_CST_I_DOUBLE, -2.4, 3.6,

AP_END); /* Do not forget the last tatg ! */

which transforms an null expression into 3 x0 + 3/2 x1 + 4.1 x2 + [-2.4,3.6] and is equiv-

alent to:

ap_linexpr0_set_coeff_scalar_int(e,0, 3);

ap_linexpr0_set_coeff_scalar_frac(e,1, 3,2);

ap_linexpr0_set_coeff_scalar_double(e,2, 4.1);

ap_linexpr0_set_cst_interval_double(e, -2.4, 3.6);

8.2.3.4 Assigning values

[Function]void ap_linexpr0_set_cst (ap linexpr0 t* e, ap coefft* coeff)

Chapter 8: Level 0 of the interface 77

[Function]void ap_linexpr0_set_cst_scalar (ap linexpr0 t* e, ap scalar t*
scalar)

[Function]void ap_linexpr0_set_cst_scalar_int (ap linexpr0 t* e, int num)
[Function]void ap_linexpr0_set_cst_scalar_frac (ap linexpr0 t* e, int num,

unsigned int den)
[Function]void ap_linexpr0_set_cst_scalar_double (ap linexpr0 t* e, double

num)

[Function]void ap_linexpr0_set_cst_interval (ap linexpr0 t* e, ap interval t*
itv)

[Function]void ap_linexpr0_set_cst_interval_scalar (ap linexpr0 t* e,
ap scalar t* inf, ap scalar t* sup)

[Function]void ap_linexpr0_set_cst_interval_int (ap linexpr0 t* e, int inf,
int sup)

[Function]void ap_linexpr0_set_cst_interval_frac (ap linexpr0 t* e, int
numinf, unsigned int deninf, int numsup, unsigned int densup)

[Function]void ap_linexpr0_set_cst_interval_double (ap linexpr0 t* e,
double inf, double sup)

Set the constant coefficient of expression e.

[Function]bool ap_linexpr0_set_coeff (ap linexpr0 t* e, ap dim t dim,
ap coefft* coeff)

[Function]bool ap_linexpr0_set_coeff_scalar (ap linexpr0 t* e, ap dim t dim,
ap scalar t* scalar)

[Function]bool ap_linexpr0_set_coeff_scalar_int (ap linexpr0 t* e, ap dim t
dim, int num)

[Function]bool ap_linexpr0_set_coeff_scalar_frac (ap linexpr0 t* e,
ap dim t dim, int num, unsigned int den)

[Function]bool ap_linexpr0_set_coeff_scalar_double (ap linexpr0 t* e,
ap dim t dim, double num)

[Function]bool ap_linexpr0_set_coeff_interval (ap linexpr0 t* e, ap dim t
dim, ap interval t* itv)

[Function]bool ap_linexpr0_set_coeff_interval_scalar (ap linexpr0 t* e,
ap dim t dim, ap scalar t* inf, ap scalar t* sup)

[Function]bool ap_linexpr0_set_coeff_interval_int (ap linexpr0 t* e,
ap dim t dim, int inf, int sup)

[Function]bool ap_linexpr0_set_coeff_interval_frac (ap linexpr0 t* e,
ap dim t dim, int numinf, unsigned int deninf, int numsup, unsigned int
densup)

[Function]void ap_linexpr0_set_coeff_interval_double (ap linexpr0 t* e,
ap dim t dim, double inf, double sup)

Set the coefficient of the dimension dim of expression e.

Return true in case ap_linexpr0_coeffref(e,dim) returns NULL.

8.2.4 Change of dimensions and permutations of linear expressions of
level 0

[Function]void ap_linexpr0_add_dimensions_with (ap linexpr0 t* e,
ap dimchange t* dimchange)

78 APRON 0.9.12

[Function]ap_linexpr0_t* ap_linexpr0_add_dimensions (ap linexpr0 t* e,
ap dimchange t* dimchange)

These two functions add dimensions to the expressions, following the semantics of dimchange

(see the type definition of ap_dimchange_t).

[Function]void ap_linexpr0_permute_dimensions_with (ap linexpr0 t* e,
ap dimperm t* perm)

[Function]ap_linexpr0_t* ap_linexpr0_permute_dimensions (ap linexpr0 t* e,
ap dimperm t* perm)

These two functions apply the given permutation to the dimensions of e. If dense representa-

tion, the size of the permutation should be e->size. If sparse representation, the dimensions

present in the expression should just be less than the size of the permutation.

8.2.5 Other functions on linear expressions of level 0

All these functions induces a reduction of the coefficients of the linear expression.

[Function]int ap_linexpr0_hash (ap linexpr0 t* e)

Return a hash code.

[Function]bool ap_linexpr0_equal (ap linexpr0 t* e1, ap linexpr0 t* e2)

Equality test.

[Function]int ap_linexpr0_compare (ap linexpr0 t* e1, ap linexpr0 t* e2)

Lexicographic ordering, terminating by constant coefficients.

Use the (partial order) comparison function on coefficients coeff_cmp.

8.3 Linear constraints of level 0 (ap_lincons0.h)

[datatype]ap_constyp_t

typedef enum ap_constyp_t {

AP_CONS_EQ, /* equality constraint */

AP_CONS_SUPEQ, /* >= constraint */

AP_CONS_SUP, /* > constraint */

AP_CONS_EQMOD, /* congruence equality constraint */

AP_CONS_DISEQ /* disequality constraint */

} ap_constyp_t;

Datatype for type of constraints.

[datatype]ap_lincons0_t

typedef struct ap_lincons0_t {

ap_linexpr0_t* linexpr0; /* expression */

ap_constyp_t constyp; /* type of constraint */

ap_scalar_t* scalar; /* maybe NULL.

For EQMOD constraint, indicates the

modulo */

} ap_lincons0_t;

Datatype for constraints.

Constraints are meant to be manipulated freely via their components. Creating the constraint

[1,2]x0 + 5/2x1 >=0 and then freeing it can be done with

ap_lincons0_t cons = ap_lincons0_make(AP_CONS_SUPEQ,

Chapter 8: Level 0 of the interface 79

ap_linexpr0_alloc(AP_LINEXPR_SPARSE,2),

NULL);

ap_linexpr0_set_list(cons.linexpr0,

AP_COEFF_I_INT, 1,2, 0,

AP_COEFF_S_FRAC, 5,2, 1,

AP_END);

ap_lincons0_clear(&cons);

[datatype]ap_lincons0_array_t

typedef struct ap_lincons0_array_t {

ap_lincons0_t* p;

size_t size;

} ap_lincons0_array_t;

Datatype for arrays of constraints.

Arrays are accessed directly, for example by writing array->p[i] (of type ap_lincons0_t),

array->p[i].constyp and array->p[i].linexpr0.

One can assign a constraint to the index index by writing: array->p[index] = ap_lincons0_

make(constyp,expr).

8.3.1 Allocating linear constraints of level 0

[Function]ap_lincons0_t ap_lincons0_make (ap constyp t constyp,
ap linexpr0 t* linexpr, ap scalar t* mod)

Create a constraint of type constyp with the expression linexpr, and the modulo mod in case

of a congruence constraint (constyp==AP_CONS_EQMOD).

The expression is not duplicated, just pointed to, so it becomes managed via the constraint.

[Function]ap_lincons0_t ap_lincons0_make_unsat ()

Create the constraint -1>=0.

[Function]ap_lincons0_t ap_lincons0_copy (ap lincons0 t* cons)

Duplication

[Function]void ap_lincons0_clear (ap lincons0 t* cons)

Clear the constraint.

[Function]void ap_lincons0_fprint (FILE* stream, ap lincons0 t* cons, char**
name_of_dim);

Print the linear constraint on stream stream, using the array name of dim to convert dimen-

sions to variable names. If name of dim is NULL, the dimensions are named x0,x1,....

8.3.2 Tests on linear constraints of level 0

[Function]bool ap_lincons0_is_unsat (ap lincons0 t* cons)

Return true if the constraint is not satisfiable.

8.3.3 Arrays of linear constraints of level 0

[Function]ap_lincons0_array_t ap_lincons0_array_make (size t size)
Allocate an array of size constraints.

The constraints are initialized with NULL pointers for underlying expressions.

80 APRON 0.9.12

[Function]void ap_lincons0_array_clear (ap lincons0 array t* array)

Clear the constraints of the array, and then the array itself.

[Function]void ap_lincons0_array_fprint (FILE* stream, ap lincons0 array t*
array, char** name_of_dim)

Print the array on the stream.

8.3.4 Change of dimensions and permutations of linear constraints of
level 0

[Function]void ap_lincons0_add_dimensions_with (ap lincons0 t* cons,
ap dimchange t* dimchange)

[Function]ap_lincons0_t ap_lincons0_add_dimensions (ap lincons0 t* cons,
ap dimchange t* dimchange)

These two functions add dimensions to the constraint, following the semantics of dimchange

(see the type definition of ap_dimchange_t).

[Function]void ap_lincons0_permute_dimensions_with (ap lincons0 t* cons,
ap dimperm t* perm)

[Function]ap_lincons0_t ap_lincons0_permute_dimensions (ap lincons0 t*
cons, ap dimperm t* perm)

These two functions apply the given permutation to the dimensions of cons.

[Function]void ap_lincons0_array_add_dimensions_with (ap lincons0 array t*
cons, ap dimchange t* dimchange)

[Function]ap_lincons0_array_t ap_lincons0_array_add_dimensions

(ap lincons0 array t* cons, ap dimchange t* dimchange)

[Function]void ap_lincons0_array_permute_dimensions_with

(ap lincons0 array t* cons, ap dimperm t* perm)

[Function]ap_lincons0_array_t ap_lincons0_array_permute_dimensions

(ap lincons0 array t* cons, ap dimperm t* perm)

Extension to arrays of the corresponding functions on constraints.

8.4 Generators of level 0 (ap_generator0.h)

Datatypes and functions are almost isomorphic to datatypes and functions for linear constraints.

[datatype]ap_gentyp_t

typedef enum ap_gentyp_t {

AP_GEN_LINE,

AP_GEN_RAY,

AP_GEN_VERTEX,

AP_GEN_LINEMOD,

AP_GEN_RAYMOD

} ap_gentyp_t;

Datatype for type of generators.

[datatype]ap_generator0_t

typedef struct ap_generator0_t {

ap_linexpr0_t* linexpr0; /* underlying expression. */

ap_gentyp_t gentyp; /* type of generator */

} ap_generator0_t;

Chapter 8: Level 0 of the interface 81

Datatype for generators.

The constant of the expression is ignored, and the expression is assumed to be truly linear

(without intervals).

[datatype]ap_generator0_array_t

typedef struct ap_generator0_array_t {

ap_generator0_t* p;

size_t size;

} ap_generator0_array_t;

Datatype for arrays of generators.

8.4.1 Allocating generators of level 0

[Function]ap_generator0_t ap_generator0_make (ap gentyp t gentyp,
ap linexpr0 t* linexpr)

Create a generator of type gentyp with the expression linexpr.

The expression is not duplicated, just pointed to, so it becomes managed via the generator.

[Function]ap_generator0_t ap_generator0_copy (gent ap generator0 t* gen)

Duplication

[Function]void ap_generator0_clear (ap generator0 t* gen)

Clear the generator.

[Function]void ap_generator0_fprint (FILE* stream, gent ap generator0 t*
gen, char** name_of_dim);

Print the linear generator on stream stream, using the array name of dim to convert dimen-

sions to variable names. If name of dim is NULL, the dimensions are named x0,x1,....

8.4.2 Arrays of generators of level 0

Arrays are accessed directly, for example by writing array->p[i] (of type ap_generator0_t),

array->p[i].gentyp and array->p[i].linexpr0.

One can assign a generator to the index index by writing: array->p[index] = ap_

generator0_make(gentyp,expr).

[Function]ap_generator0_array_t ap_generator0_array_make (size t size)
Allocate an array of size generators. The generators are initialized with NULL pointers for

underlying expressions.

[Function]void ap_generator0_array_clear (ap generator0 array t* array)

Clear the generators of the array, and then the array itself.

[Function]void ap_generator0_array_fprint (FILE* stream, gent
ap generator0 array t* array, char** name_of_dim)

Print the array on the stream.

8.4.3 Change of dimensions and permutations of generators of level 0

[Function]void ap_generator0_add_dimensions_with (ap generator0 t* gen,
gent ap dimchange t* dimchange)

82 APRON 0.9.12

[Function]ap_generator0_t ap_generator0_add_dimensions (gent
ap generator0 t* gen, gent ap dimchange t* dimchange)

These two functions add dimensions to the generator, following the semantics of dimchange

(see the type definition of ap_dimchange_t).

[Function]void ap_generator0_permute_dimensions_with (ap generator0 t*
gen, gent ap dimperm t* perm)

[Function]ap_generator0_t ap_generator0_permute_dimensions (gent
ap generator0 t* gen, gent ap dimperm t* perm)

These two functions apply the given permutation to the dimensions of gen.

[Function]void ap_generator0_array_add_dimensions_with

(ap generator0 array t* gen, gent ap dimchange t* dimchange)

[Function]ap_generator0_array_t ap_generator0_array_add_dimensions (gent
ap generator0 array t* gen, gent ap dimchange t* dimchange)

[Function]void ap_generator0_array_permute_dimensions_with

(ap generator0 array t* gen, gent ap dimperm t* perm)

[Function]ap_generator0_array_t ap_generator0_array_permute_dimensions

(gent ap generator0 array t* gen, gent ap dimperm t* perm)

Extension to arrays of the corresponding functions on generators.

8.5 Tree expressions of level 0 (ap_texpr0.h)

8.6 Tree constraints of level 0 (ap_tcons0.h)

8.7 Abstract values and operations of level 0 (ap_abstract0.h)

[datatype]ap_abstract0_t

Datatype for abstract values at level 0.

Most operations are offered in 2 versions: functional or destructive. In such a case, the

Boolean argument destructive controls the behaviour of the functionn:

• In the destructive semantics, after the call the first abstract value in the arguments of the

function is destroyed and should not be referenced any more. Although the returned value

might actually be equal to the (destroyed) argument, the user just manipulates the returned

value and never refers directly to the (destroyed) argument.

• In the functional semantics, the first abstract value in the arguments is neither (semanti-

cally) modified nor deallocated.

8.7.1 Allocating abstract values of level 0

[Function]ap_abstract0_t* ap_abstract0_copy (ap manager t* man,
ap abstract0 t* a)

Return a copy of a, on which destructive update does not affect a.

[Function]void ap_abstract0_free (ap manager t* man, ap abstract0 t* a)

Free all the memory used by a.

[Function]size_t ap_abstract0_size (ap manager t* man, ap abstract0 t* a)

Return the abstract size of a.

Chapter 8: Level 0 of the interface 83

8.7.2 Control of internal representation of level 0

[Function]void ap_abstract0_minimize (ap manager t* man, ap abstract0 t* a)

Minimize the size of the representation of a. This may result in a later recomputation of

internal information.

[Function]void ap_abstract0_canonicalize (ap manager t* man,
ap abstract0 t* a)

Put a in canonical form. (not yet clear definition)

[Function]int ap_abstract0_hash (ap manager t* man, ap abstract0 t* a)

Return an hash value for a. Two abstract values in canonical from (according to ap_

abstract0_canonicalize) and considered as equal by the function ap_abstract0_is_eq

should be given the same hash value (this implies more or less a canonical form).

[Function]void ap_abstract0_approximate (ap manager t* man, ap abstract0 t*
a, int algorithm)

Perform some transformation on a, guided by the field algorithm.

The transformation may lose information. The argument algorithm overrides the field algo-

rithm of the structure of type ap_funopt_t associated to ap_abstract0_approximate.

8.7.3 Printing abstract values of level 0

[Function]void ap_abstract0_fprint (FILE* stream, ap manager t* man,
ap abstract0 t* a, char** name_of_dim)

Print a in a pretty way, using array name of dim to name dimensions.. If name of dim is

NULL, use the default names x0, x1,

[Function]void ap_abstract0_fprintdiff (FILE* stream, ap manager t* man,
ap abstract0 t* a1, ap abstract0 t* a2, char** name_of_dim)

Print the difference between a1 (old value) and a2 (new value), using array name of dim to

name dimensions. The meaning of difference is library dependent.

[Function]void ap_abstract0_fdump (FILE* stream, ap manager t* man,
ap abstract0 t* a)

Dump the internal representation of a for debugging purposes.

8.7.4 Serialization of abstract values of level 0

[Function]ap_membuf_t ap_abstract0_serialize_raw (ap manager t* man,
ap abstract0 t* a)

Allocate a memory buffer (with malloc), output a in raw binary format to it and return a

pointer on the memory buffer and the number of bytes written. It is the user responsability

to free the memory afterwards (with free).

[Function]ap_abstract0_t* ap_abstract0_deserialize_raw (ap manager t*
man, void* ptr, size t* size)

Return the abstract value read in raw binary format from the buffer pointed by ptr and store

in size the number of bytes read.

8.7.5 Constructors for abstract values of level 0

[Function]ap_abstract0_t* ap_abstract0_bottom (ap manager t* man, size t
intdim, size t realdim)

84 APRON 0.9.12

[Function]ap_abstract0_t* ap_abstract0_top (ap manager t* man, size t
intdim, size t realdim)

Create resp. a bottom (empty) value and a top (universe) value with intdim integer dimen-

sions and realdim real dimensions.

[Function]ap_abstract0_t* ap_abstract0_of_box (ap manager t* man, size t
intdim, size t realdim, ap interval t** array)

Abstract an hypercube defined by the array of intervals array of size intdim+realdim.

8.7.6 Accessors for abstract values of level 0

[Function]ap_dimension_t ap_abstract0_dimension (ap manager t* man,
ap abstract0 t* a)

Return the dimensionality of a.

8.7.7 Tests on abstract values of level 0

In abstract tests,

• true means that the predicate is certainly true;

• false means false or don’t know (an exception has occurred, or the exact computation was

considered too expensive to be performed, according to the options).

[Function]bool ap_abstract0_is_bottom (ap manager t* man, ap abstract0 t* a)

[Function]bool ap_abstract0_is_top (ap manager t* man, ap abstract0 t* a)

Emtpiness and universality tests.

[Function]bool ap_abstract0_is_leq (ap manager t* man, ap abstract0 t* a1,
ap abstract0 t* a2)

[Function]bool ap_abstract0_is_eq (ap manager t* man, ap abstract0 t* a1,
ap abstract0 t* a2)

Inclusion and equality tests.

[Function]bool ap_abstract0_sat_interval (ap manager t* man,
ap abstract0 t* a, ap dim t dim, ap interval t* interval)

Is the dimension dim included in the interval interval in the abstract value a ?

[Function]bool ap_abstract0_sat_lincons (ap manager t* man, ap abstract0 t*
a, ap lincons0 t* cons)

[Function]bool ap_abstract0_sat_tcons (ap manager t* man, ap abstract0 t* a,
ap tcons0 t* cons)

Does the abstract value a satisfy the constraint cons ?

[Function]bool ap_abstract0_is_dimension_unconstrained (ap manager t*
man, ap abstract0 t* a, ap dim t dim)

Is the dimension dim unconstrained in the abstract value a ? If it is the case, we have

forget(man,a,dim) == a.

8.7.8 Extraction of properties of abstract values of level 0

[Function]ap_interval_t* ap_abstract0_bound_dimension (ap manager t* man,
ap abstract0 t* a, ap dim t dim)

Return the interval taken by the dimension dim over the abstract valuea

Chapter 8: Level 0 of the interface 85

[Function]ap_interval_t* ap_abstract0_bound_linexpr (ap manager t* man,
ap abstract0 t* a, ap linexpr0 t* expr)

[Function]ap_interval_t* ap_abstract0_bound_texpr (ap manager t* man,
ap abstract0 t* a, ap texpr0 t* expr)

Return the interval taken by a linear expression expr over the abstract value a.

This function allows to solve a Linear Programming (LP) problem, but depending on the

underlying domain the solution may be not optimal.

[Function]ap_interval_t** ap_abstract0_to_box (ap manager t* man,
ap abstract0 t* a)

Convert a to an interval/hypercube. The size of the resulting array is

ap abstract0 dimension(man,a).

[Function]ap_lincons0_array_t ap_abstract0_to_lincons_array

(ap manager t* man, ap abstract0 t* a)

[Function]ap_tcons0_array_t ap_abstract0_to_tcons_array (ap manager t*
man, ap abstract0 t* a)

Convert a to a conjunction of constraints.

The constraints are normally guaranteed to be scalar (without intervals)

[Function]ap_generator0_array_t ap_abstract0_to_generator_array

(ap manager t* man, ap abstract0 t* a)

Convert a to an array of generators.

8.7.9 Meet and Join of abstract values of level 0

[Function]ap_abstract0_t* ap_abstract0_meet (ap manager t* man, bool
destructive, ap abstract0 t* a1, ap abstract0 t* a2)

[Function]ap_abstract0_t* ap_abstract0_join (ap manager t* man, bool
destructive, ap abstract0 t* a1, ap abstract0 t* a2)

Meet and Join of 2 abstract values

[Function]ap_abstract0_t* ap_abstract0_meet_array (ap manager t* man,
ap abstract0 t** array, size t size)

[Function]ap_abstract0_t* ap_abstract0_join_array (ap manager t* man,
ap abstract0 t** array, size t size)

Meet and Join of the array array of abstract values of size size.

Raise an AP_EXC_INVALID_ARGUMENT exception if size==0 (no way to define the dimension-

ality of the result in such a case).

[Function]ap_abstract0_t* ap_abstract0_meet_lincons_array (ap manager t*
man, bool destructive, ap abstract0 t* a, ap lincons0 array t* array)

[Function]ap_abstract0_t* ap_abstract0_meet_tcons_array (ap manager t*
man, bool destructive, ap abstract0 t* a, ap tcons0 array t* array)

Meet of the abstract value a with the set of constraints array.

array should have exactly the same dimensionality as a.

[Function]ap_abstract0_t* ap_abstract0_add_ray_array (ap manager t* man,
bool destructive, ap abstract0 t* a, ap generator0 array t* array)

Generalized time elapse operator.

array is supposed to contain only rays or lines, no vertices.

86 APRON 0.9.12

array should have exactly the same dimensionality as a.

8.7.10 Assignements and Substitutions of abstract values of level 0

[Function]ap_abstract0_t* ap_abstract0_assign_linexpr_array

(ap manager t* man, bool destructive, ap abstract0 t* org, ap dim t*
tdim, ap linexpr0 t** texpr, size t size, ap abstract0 t* dest)

[Function]ap_abstract0_t* ap_abstract0_substitute_linexpr_array

(ap manager t* man, bool destructive, ap abstract0 t* org, ap dim t*
tdim, ap linexpr0 t** texpr, size t size, ap abstract0 t* dest)

[Function]ap_abstract0_t* ap_abstract0_assign_texpr_array (ap manager t*
man, bool destructive, ap abstract0 t* org, ap dim t* tdim, ap texpr0 t**
texpr, size t size, ap abstract0 t* dest)

[Function]ap_abstract0_t* ap_abstract0_substitute_texpr_array

(ap manager t* man, bool destructive, ap abstract0 t* org, ap dim t*
tdim, ap texpr0 t** texpr, size t size, ap abstract0 t* dest)

Parallel Assignement and Substitution of several dimensions by expressions in abstract value

org.

dest is an optional argument. If not NULL, semantically speaking, the result of the trans-

formation is intersected with dest. This is useful for precise backward transformations in

lattices like intervals or octagons.

8.7.11 Existential quantification of abstract values of level 0

[Function]ap_abstract0_t* ap_abstract0_forget_array (ap manager t* man,
bool destructive, ap abstract0 t* a, ap dim t* tdim, size t size, bool
project)

Forget (project=false) or Project (project=true) the array of dimensions tdim of size size

in the abstract value a.

8.7.12 Change and permutation of dimensions of abstract values of
level 0

[Function]ap_abstract0_t* ap_abstract0_add_dimensions (ap manager t* man,
bool destructive, ap abstract0 t* a, ap dimchange t* dimchange, bool
project)

[Function]ap_abstract0_t* ap_abstract0_remove_dimensions (ap manager t*
man, bool destructive, ap abstract0 t* a, ap dimchange t* dimchange)

Addition and Removal of dimensions in a according to dimchange. In the case of addition, new

dimensions are either unconstrained (project==false) or initialized to 0 ((project==true).

[Function]ap_abstract0_t* ap_abstract0_apply_dimchange2 (ap manager t*
man, bool destructive, ap abstract0 t* a, ap dimchange2 t* dimchange2,
bool project)

Apply the transformation specified by dimchange2. New dimensions are either unconstrained

(project==false) or initialized to 0 ((project==true).

[Function]ap_abstract0_t* ap_abstract0_permute_dimensions (ap manager t*
man, bool destructive, ap abstract0 t* a, ap dimperm t* perm)

Permute the dimensions of a according to the permutation perm.

The size of the permutation is supposed to be large enough w.r.t. a.

Chapter 8: Level 0 of the interface 87

8.7.13 Expansion and Folding of dimensions of abstract values of level
0

Formally, expanding z into z and w in abstract value (predicate) P is defined by

expand(P (x, y, z), z, w) = P (x, y, z)andP (x, y, w).

Conversely, folding z and w into z in abstract value (predicate) Q is defined by

fold(Q(x, y, z, w), z, w) = (existsw : Q(x, y, z, w))or(existsz : Q(x, y, z, w)[z < −w]).

[Function]ap_abstract0_t* ap_abstract0_expand (ap manager t* man, bool
destructive, ap abstract0 t* a, ap dim t dim, size t n)

Expand the dimension dim into itself + n additional dimensions.

It results in n+1 unrelated dimensions having same relations with other dimensions. The n+1

dimensions are put as follows:

• original dimension dim;

• if dim is integer, the n additional dimensions are put at the end of integer dimensions;

if it is real, at the end of the real dimensions.

[Function]ap_abstract0_t* ap_abstract0_fold (ap manager t* man, bool
destructive, ap abstract0 t* a, ap dim t* tdim, size t size)

Fold the dimensions in the array tdim of size size>=1 and put the result in the first dimension

in the array assumed to be sorted. The other dimensions of the array are then removed.

8.7.14 Widening of abstract values of level 0

[Function]ap_abstract0_t* ap_abstract0_widening (ap manager t* man,
ap abstract0 t* a1, ap abstract0 t* a2)

Widening of a1 with a2. a1 is supposed to be included in a2.

8.7.15 Topological closure of abstract values of level 0

[Function]ap_abstract0_t* ap_abstract0_closure (ap manager t* man, bool
destructive, ap abstract0 t* a)

Relax strict constraints into non strict constraints.

8.7.16 Additional functions on abstract values of level 0

These functions do not have corresponding functions into underlying libraries.

[Function]ap_manager_t* ap_abstract0_manager (ap abstract0 t* a)

Return a reference to the manager contained in a.

The reference should not be freed.

[Function]ap_abstract0_t* ap_abstract0_of_lincons_array (ap manager t*
man, size t intdim, size t realdim, ap lincons0 array t* array)

[Function]ap_abstract0_t* ap_abstract0_of_tcons_array (ap manager t* man,
size t intdim, size t realdim, ap tcons0 array t* array)

Abstract a conjunction of constraints. The constraints in the array should have exactly the

dimensions (intdim,realdim).

[Function]ap_abstract0_t* ap_abstract0_assign_linexpr (ap manager t* man,
bool destructive, ap abstract0 t* org, ap dim t dim, ap linexpr0 t* expr,
ap abstract0 t* dest)

[Function]ap_abstract0_t* ap_abstract0_substitute_linexpr (ap manager t*
man, bool destructive, ap abstract0 t* org, ap dim t dim, ap linexpr0 t*
expr, ap abstract0 t* dest)

88 APRON 0.9.12

[Function]ap_abstract0_t* ap_abstract0_assign_texpr (ap manager t* man,
bool destructive, ap abstract0 t* org, ap dim t dim, ap texpr0 t* expr,
ap abstract0 t* dest)

[Function]ap_abstract0_t* ap_abstract0_substitute_texpr (ap manager t*
man, bool destructive, ap abstract0 t* org, ap dim t dim, ap texpr0 t*
expr, ap abstract0 t* dest)

Assignement and Substitution of the dimension dim by the expression expr in abstract value

org.

dest is an optional argument. If not NULL, semantically speaking, the result of the trans-

formation is intersected with dest. This is useful for precise backward transformations in

lattices like intervals or octagons.

[Function]ap_abstract0_t* ap_abstract0_widening_threshold (ap manager t*
man, ap abstract0 t* a1, ap abstract0 t* a2, ap lincons0 array t* array)

Widening with threshold.

Intersect the result of the standard widening with all the constraints in array that are satisfied

by both a1 and a2.

89

9 Functions for implementors

The signatures and documentation of these functions are provided by the files ap_generic.h,

ap_linearize.h and ap_reducedproduct.h.

These functions are dedicated to implementors of underlying libraries. They offer generic

default implementations for some of the operations required by the APRON API, when there is

no more specific and efficient implementation for the domain being implemented.

To use one of these, the function allocating manager, which is specific to the domain, should

put the corresponding pointer in the virtual table to such a generic implementation.

They manipulated "unboxed" abstract values, which are native to the underlying library:

they are not yet boxed with the manager in the type ap_abstract0_t.

91

10 Examples

	APRON Copying Conditions (LGPL)
	Introduction to APRON
	APRON Rationale and Functionalities
	General choices
	Functionalities of the interface at level 0
	Functionalities of the interface at level 1

	APRON Guidelines
	Installing APRON
	C Programming Guidelines
	C Headers and Libraries
	Naming conventions and Allocation/Deallocation schemes
	Allocating managers and setting options
	Sequel of the small example
	Typing issue in C

	OCaml Programming Guidelines
	How to make an existing library conformant to APRON ?

	Managers and Abstract Domains
	Managers (ap_manager.h)
	Datatypes
	Functions related to managers

	Box (box.h): intervals abstract domain
	Use of Box
	Allocating Box managers

	Oct: octagon abstract domain
	NewPolka (pk.h): convex polyhedra and linear equalities abstract domains
	Use of NewPolka
	Allocating NewPolka managers and setting specific options
	NewPolka standard options

	PPL (ap_ppl.h): convex polyhedra and linear congruences abstract domains
	Use of APRON PPL
	Allocating APRON PPL managers
	APRON PPL standard options

	pkgrid (ap_pkgrid.h): reduced product of NewPolka convex polyhedra and PPL linear congruences abstract domains
	Use of pkgrid
	Allocating pkgrid managers

	Scalars & Intervals & coefficients
	Scalars (ap_scalar.h)
	Initializing scalars
	Assigning scalars
	Converting scalars
	Comparing scalars
	Other operations on scalars

	Intervals (ap_interval.h)
	Initializing intervals
	Assigning intervals
	Comparing intervals
	Other operations on intervals
	Array of intervals

	Coefficients (ap_coeff.h)
	Initializing coefficients
	Assigning coefficients
	Comparing coefficients
	Other operations on coefficients

	Level 1 of the interface
	Variables and related operations (ap_var.h)
	Environments (ap_environment.h)
	Linear expressions of level 1 (ap_linexpr1.h)
	Allocating linear expressions of level 1
	Tests on linear expressions of level 1
	Access to linear expressions of level 1
	Getting references
	Getting values
	Assigning values with a list of arguments
	Assigning values

	Change of dimensions and permutations of linear expressions of level 1

	Linear constraints of level 1 (ap_lincons1.h)
	Allocating linear constraints of level 1
	Tests on linear constraints of level 1
	Access to linear constraints of level 1
	Change of dimensions and permutations of linear constraints of level 1
	Arrays of linear constraints of level 1

	generators of level 1 (ap_generator1.h)
	Allocating generators of level 1
	Access to generators of level 1
	Change of dimensions and permutations of generators of level 1
	Arrays of generators of level 1

	Tree expressions of level 1 (ap_texpr1.h)
	Datatypes for tree expressions of level 1
	Constructors/Destructors for tree expressions of level 1
	Tests on tree expressions of level 1
	Operations on tree expressions of level 1

	Tree constraints of level 1 (ap_tcons1.h)
	Datatypes for tree constraints of level 1
	Constructors/Destructors for tree constraints of level 1
	Operations on tree constraints of level 1
	Arrays of tree constraints of level 1

	Abstract values and operations of level 1 (ap_abstract1.h)
	Allocating abstract values of level 1
	Control of internal representation of abstract values of level 1
	Printing abstract values of level 1
	Serialization of abstract values of level 1
	Constructors for abstract values of level 1
	Accessors for abstract values of level 1
	Tests on abstract values of level 1
	Extraction of properties of abstract values of level 1
	Meet and Join of abstract values of level 1
	Assignements and Substitutions of abstract values of level 1
	Existential quantification of abstract values of level 1
	Change of environments of abstract values of level 1
	Expansion and Folding of dimensions of abstract values of level 1
	Widening of abstract values of level 1
	Topological closure of abstract values of level 1
	Additional functions on abstract values of level 1

	Level 0 of the interface
	Dimensions and related operations (ap_dimension.h)
	Manipulating changes of dimensions
	Manipulating permutations of dimensions

	Linear expressions of level 0 (ap_linexpr0.h)
	Allocating linear expressions of level 0
	Tests on linear expressions of level 0
	Access to linear expressions of level 0
	Getting references
	Getting values
	Assigning values with a list of arguments
	Assigning values

	Change of dimensions and permutations of linear expressions of level 0
	Other functions on linear expressions of level 0

	Linear constraints of level 0 (ap_lincons0.h)
	Allocating linear constraints of level 0
	Tests on linear constraints of level 0
	Arrays of linear constraints of level 0
	Change of dimensions and permutations of linear constraints of level 0

	Generators of level 0 (ap_generator0.h)
	Allocating generators of level 0
	Arrays of generators of level 0
	Change of dimensions and permutations of generators of level 0

	Tree expressions of level 0 (ap_texpr0.h)
	Tree constraints of level 0 (ap_tcons0.h)
	Abstract values and operations of level 0 (ap_abstract0.h)
	Allocating abstract values of level 0
	Control of internal representation of level 0
	Printing abstract values of level 0
	Serialization of abstract values of level 0
	Constructors for abstract values of level 0
	Accessors for abstract values of level 0
	Tests on abstract values of level 0
	Extraction of properties of abstract values of level 0
	Meet and Join of abstract values of level 0
	Assignements and Substitutions of abstract values of level 0
	Existential quantification of abstract values of level 0
	Change and permutation of dimensions of abstract values of level 0
	Expansion and Folding of dimensions of abstract values of level 0
	Widening of abstract values of level 0
	Topological closure of abstract values of level 0
	Additional functions on abstract values of level 0

	Functions for implementors
	Examples

